Granny Storm Crow's List - January 2014

THE SYNTHETICS

ABN-CBD/ ABNORMAL CANNABIDIOL/ CAY10429 - GPR-18 agonist? GPR-55 agonist?

Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. (full – 2008) http://molpharm.aspetjournals.org/content/73/2/441.long

N-arachidonoylglycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor (full – 2010) http://www.biomedcentral.com/1471-2202/11/44

siRNA knockdown of GPR18 receptors in BV-2 microglia attenuates N-arachidonoyl glycine-induced cell migration (full – 2012) http://www.jmolecularsignaling.com/content/7/1/10

Mechanism of Central Atypical Cannabinoid Receptor GPR18-Mediated Hypotension in Conscious Rats (abst – 2013)
http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/654.15?sid=eea722c0-971c-4daa-8b8c-38c0c63c19ad

Role of Central Atypical Cannabinoid Receptor GPR18 in Modulating Cardiovascular Function (abst – 2013)
http://www.fasebj.org/cgi/content/meeting_abstract/26/1_MeetingAbstracts/663.10?sid=eea722c0-971c-4daa-8b8c-38c0c63c19ad

Evaluation of the insulin releasing and antihyperglycaemic activities of GPR55 lipid agonists using clonal beta-cells, isolated pancreatic islets and mice. (abst – 2013)

Cannabinoid Effects on β Amyloid Fibril and Aggregate Formation, Neuronal and Microglial-Activated Neurotoxicity In Vitro (abst – 2013)

A GPR18-based signaling system regulates IOP in murine eye. (abst – 2013)

The Novel Endocannabinoid Receptor GPR18 isExpressed in the Rostral Ventrolateral Medulla and Exerts Tonic Restraining Influence on Blood Pressure. (full – 2014)
http://jpet.aspetjournals.org/content/early/2014/01/15/jpet.113.209213.long

ACEA/ARACHIDONYL-2'-CHLOROETHYLAMIDE - CB1 agonist

Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1) (full – 1999)
http://jpet.aspetjournals.org/content/289/3/1427.long

The cannabinoids R(-)-7-hydroxy-delta-6-tetra-hydrocannabinol-dimethylheptyl (HU-210), 2-O-arachidonoylglycerylether (HU-310) and arachidonyl-2-chloroethylamide (ACEA) increase isoflurane provoked sleep duration by activation of cannabinoids 1 (CB1)-receptors in mice. (abst – 2002) http://www.ncbi.nlm.nih.gov/pubmed/12095655

In vivo effects of CB1 receptor ligands on lipid peroxidation and antioxidant defense systems in the rat brain of healthy and ethanol-treated rats. (full – 2006)

Differential effect of cannabinoid agonists and endocannabinoids on histamine release from distinct regions of the rat brain. (full – 2006)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1769340/?tool=pubmed

Opposing control of cannabinoid receptor stimulation on amyloid-beta-induced reactive gliosis: in vitro and in vivo evidence. (full - 2007) http://jpet.aspetjournals.org/content/322/3/1144.long

Attenuation of Experimental Autoimmune Hepatitis by Exogenous and Endogenous Cannabinoids: Involvement of Regulatory T Cells (full - 2008) http://molpharm.aspetjournals.org/content/74/1/20.full?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=320&resourcetype=HWCIT#content-block

Cannabinoid modulation of cutaneous Adelta nociceptors during inflammation. (full – 2008) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585399/?tool=pubmed

Cannabinoid receptor activation induces apoptosis through tumor necrosis factor alpha-mediated ceramide de novo synthesis in colon cancer cells. (full – 2008) http://clincancerres.aacrjournals.org/content/14/23/7691.long

Endogenous cannabinoids induce fever through the activation of CB1 receptors. (full – 2009) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765314/?tool=pubmed

Regulatory Role of Cannabinoid Receptor 1 in Stress-Induced Excitotoxicity and Neuroinflammation (full - 2010) http://www.nature.com/npp/journal/vaop/ncurrent/full/npp2010214a.html

Contrasting effects of different cannabinoid receptor ligands on mouse ingestive behavior (abst – 2012) http://www.unboundmedicine.com/medline/ebm/record/22772336/abstract/Contrasting_effects_of_differen t_cannabinoid_receptor_ligands_on_mouse_ingestive_behavior_.

Protective effect of cannabinoid CB1 receptor activation against altered intrinsic repetitive firing properties induced by Aβ neurotoxicity. (abst – 2012)

CB1 cannabinoid receptor activation rescues amyloid β-induced alterations in behaviour and intrinsic electrophysiological properties of rat hippocampal CA1 pyramidal neurones. (abst – 2012)

Opposing Roles for Cannabinoid Receptor Type-1 (CB(1)) and Transient Receptor Potential Vanilloid Type-1 Channel (TRPV1) on the Modulation of Panic-Like Responses in Rats. (abst – 2012)

Contrasting protective effects of cannabinoids against oxidative stress and amyloid-β evoked neurotoxicity in vitro. (abst – 2012)

Cannabinoids and muscular pain. Effectiveness of the local administration in rat.
(abst – 2012)

Revisiting CB1 Receptor as Drug Target in Human Melanoma. (abst – 2012)

Photoperiodic Changes in Endocannabinoid Levels and Energetic Responses to Altered Signalling at CB1 Receptors in Siberian Hamsters (abst – 2012)

Effect of ACEA-a selective cannabinoid CB1 receptor agonist on the protective action of different antiepileptic drugs in the mouse pentylenetetrazole-induced seizure model. (abst – 2012)

(abst – 2012)

Distribution and function of the endocannabinoid system in the rat and human bladder.
(abst – 2012)

Chronic activation of cannabinoid receptors in vitro does not compromise mouse islet function. (abst – 2012)

Study: Cannabis Agonists Produce Anti-Cancer Effects In Human Liver Cancer Cells
(news – 2012)

Anti-Cancer Effects In Human Liver Cancer Cells Produced By Cannabis Agonists
(news – 2012)
http://www.imarijuana.com/tag/cannabinoid-agonists

Type-1 (CB(1)) Cannabinoid Receptor Promotes Neuronal Differentiation and Maturation of Neural Stem Cells. (full – 2013)
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0054271

AJULEMIC ACID/ AjA/ IP-751/ HU-239/ CT-3 - analog of Δ8-THC-11-oic acid, mechanism of action not established

The Role of Cannabis and Cannabinoids in Pain Management (full – 2002)
http://www.humanhemphealth.ca/Russo-AAPM_chapter.pdf

Marijuana-Derived Compound Targets Pain, Inflammation (news - 2002)

Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. (full - 2003)
http://jama.ama-assn.org/cgi/content/full/290/13/1757?maxtoshow=&hits=80&RESULTFORMATT=&fulltext=cannabis&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT

Ajulemic acid: A novel cannabinoid produces analgesia without a “high” (abst - 2004)

Ajulemic acid (IP-751): Synthesis, proof of principle, toxicity studies, and clinical trials (full - 2005)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751505/?tool=pubmed

Marijuana-Derived Drug Suppresses Bladder Overactivity And Irritation In Animal Models (news - 2005)

Cannabimimetic Properties of Ajulemic Acid (full - 2006)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633725/?tool=pmcentrez

Marijuana-Derived Drug Suppresses Bladder Pain In Animal Models (news - 2006)
http://www.sciencedaily.com/releases/2006/05/060521103039.htm

Cannabimimetic Properties of Ajulemic Acid (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633725/

In humans, ajulemic acid has a more favorable side-effect profile than THC for the treatment of chronic neuropathic pain (full - 2007)

Letter: Preclinical assessment of abuse liability of ajulemic acid (letter - 2007)

Suppression of fibroblast metalloproteinases by ajulemic acid, a nonpsychoactive cannabinoid acid. (abst - 2007)

Effects of IP-751, ajulemic acid, on bladder overactivity induced by bladder irritation in rats. (abst - 2007)

Symptomatic treatment of multiple sclerosis using cannabinoids: recent advances.
Cannabinoids in the management of difficult to treat pain (full - 2008)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2503660/?tool=pmcentrez

Cannabinoids, Endocannabinoids, and Related Analogs in Inflammation (full - 2009) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664885/?tool=pmcentrez

AM-111/D-JNKI-1/XG- 102 – blocks the MAPK-JNK signal pathway

A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. (full – 2003)
http://www.jneurosci.org/content/23/24/8596.long

The JNK inhibitor XG-102 protects against TNBS-induced colitis. (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302790/

Molecular mechanisms involved in cochlear implantation trauma and the protection of hearing and auditory sensory cells by inhibition of c-Jun-N-terminal kinase signaling.

AM-251 – GPR 55 agonist, CB1 antagonist/ inverse agonist

Inhibition of Rat C6 Glioma Cell Proliferation by Endogenous and Synthetic Cannabinoids. Relative Involvement of Cannabinoid and Vanilloid Receptors (full - 2001) http://jpet.aspetjournals.org/content/299/3/951.full

Influence of the CB1 receptor antagonist, AM 251, on the regional haemodynamic effects of WIN-55212-2 or HU 210 in conscious rats (full - 2002) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573379/?tool=pmcentrez

CB1 cannabinoid receptor antagonism promotes remodeling and cannabinoid treatment prevents endothelial dysfunction and hypotension in rats with myocardial infarction (full - 2003) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573770/?tool=pmcentrez

Effects of cannabinoid receptor-2 activation on accelerated gastrointestinal transit in lipopolysaccharide-treated rats (full - 2004) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1575196/?tool=pmcentrez

Up-Regulation of Cyclooxygenase-2 Expression Is Involved in R(−)-Methanandamide-Induced Apoptotic Death of Human Neuroglioma Cells (full - 2004) http://molpharm.aspetjournals.org/content/66/6/1643.full.pdf+html

The cannabinoid 1 receptor antagonist, AM251, prolongs the survival of rats with severe acute pancreatitis. (full - 2005) https://www.jstage.jst.go.jp/article/tjem/207/2/207_2_99/_pdf

Cannabinoids augment the release of neuropeptide Y in the rat hypothalamus

Cannabinoid CB1 receptor antagonists cause status epilepticus-like activity in the hippocampal neuronal culture model of acquired epilepsy (full - 2006) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1808496/?tool=pmcentrez

AM 251 produces sustained reductions in food intake and body weight that are resistant to tolerance and conditioned taste aversion (full - 2006) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1615836/?tool=pmcentrez

Antinociceptive effect of cannabinoid agonist WIN 55,212–2 in rats with a spinal cord injury (full - 2006) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1861843/?tool=pmcentrez

Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats (full - 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190006/?tool=pmcentrez

Cannabinoid action in the olfactory epithelium (full - 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1815290/?tool=pmcentrez

Ultra-low dose cannabinoid antagonist AM251 enhances cannabinoid anticonvulsant effects in the pentylentetrazole-induced seizure in mice. (abst – 2007)
The local antinociceptive effects of paracetamol in neuropathic pain are mediated by cannabinoid receptors (abst – 2007)

Effect of Endocannabinoid System on the Neurogenic Function of Rat Corpus Cavernosum (abst – 2007)

Cannabinoids Inhibit HIV-1 Gp120-Mediated Insults in Brain Microvascular Endothelial Cells (full - 2008)
http://www.jimmunol.org/cgi/content/full/181/9/6406?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=160&resourcetype=HWCIT

Attenuation of Experimental Autoimmune Hepatitis by Exogenous and Endogenous Cannabinoids: Involvement of Regulatory T Cells (full - 2008)
http://molpharm.aspetjournals.org/content/74/1/20.full?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=320&resourcetype=HWCIT#content-block

Loss of cannabinoid receptor 1 accelerates intestinal tumor growth (full - 2008)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561258/?tool=pubmed

Acute hypertension reveals depressor and vasodilator effects of cannabinoids in conscious rats (full - 2008)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697765/?tool=pmcentrez

Activating Parabrachial Cannabinoid CB1 Receptors Selectively Stimulates Feeding of Palatable Foods in Rats (full - 2008)
http://www.jneurosci.org/cgi/content/full/28/39/9702?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT

Feeding induced by cannabinoids is mediated independently of the melanocortin system. (full - 2008)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2386290/?tool=pubmed

Acute effects of endocannabinoid anandamide and CB1 receptor antagonist, AM251 in the regulation of thyrotropin secretion. (full – 2008)
http://joe.endocrinology-journals.org/content/199/2/235.long

Effect of biliary cirrhosis on nonadrenergic noncholinergic-mediated relaxation of rat corpus cavernosum: Role of nitric oxide pathway and endocannabinoid system (abst – 2008)
http://journals.tums.ac.ir/abs.aspx?culture_var=en&journal_id=9&org_id=59&manuscript_id=6272

Effect of anandamide in improving of the non-adrenergic non-cholinergic relaxation of the corpus cavernosum from diabetic rats (abst – 2008)
Endocannabinoid and serotonergic systems are needed for acetaminophen-induced analgesia. (abst – 2008)
http://www.ncbi.nlm.nih.gov/pubmed/18485596?dopt=Abstract&holding=f1000,f1000m,isrctn

Peripheral cannabinoid CB1 receptors inhibit evoked responses of nociceptive neurones in vivo (abst – 2008)

Synthetic and plant-derived cannabinoid receptor antagonists show hypophagic properties in fasted and non-fasted mice (full - 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697695/?tool=pubmed

Pretreatment with electroacupuncture induces rapid tolerance to focal cerebral ischemia through regulation of endocannabinoid system. (full – 2009)
http://stroke.ahajournals.org/content/40/6/2157.full

Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory (full - 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660732/?tool=pmcentrez

Modulation of motor and sensory pathways of the peristaltic reflex by cannabinoids. (full – 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739820/?tool=pubmed

The effects of intracerebroventricular AM-251, a CB1-receptor antagonist, and ACEA, a CB1-receptor agonist, on penicillin-induced epileptiform activity in rats. (full – 2009)

Effects of the cannabinoid CB1 receptor antagonist AM 251 on the reinstatement of nicotine-conditioned place preference by drug priming in rats. (full - 2009)

Endogenous anandamide and cannabinoid receptor-2 contribute to electroacupuncture analgesia in rats. (abst – 2009)

Cannabinoids and neurodegenerative diseases. (abst - 2009)

Endocannabinoids prevent lysosomal membrane destabilisation evoked by treatment with β-amyloid in cultured rat cortical neurons (forum repost/abst – 2009)

Regulation of the Hypothalamic-Pituitary-Adrenal Axis Circadian Rhythm by Endocannabinoids Is Sexually Diergic (full - 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964781/?tool=pmcentrez
Cannabinoids excite circadian clock neurons. (full – 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927117/?tool=pubmed

GPR55 ligands promote receptor coupling to multiple signalling pathways. (full – 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931561/?tool=pubmed

Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis (full - 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898685/?tool=pubmed

Spinal and peripheral analgesic effects of the CB cannabinoid receptor agonist AM1241 in two models of bone cancer-induced pain. (full - 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931557/?tool=pubmed

The Neuroprotective Effect of Cannabinoid Receptor Agonist (WIN55,212-2) in Paraoxon Induced Neurotoxicity in PC12 Cells and N-methyl-D-aspartate Receptor Interaction (full – 2010)

Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (SAB378), a peripherally restricted cannabinoid CB1/CB2 receptor agonist, inhibits gastrointestinal motility but has no effect on experimental colitis in mice. (full – 2010)
http://jpet.aspetjournals.org/content/334/3/973.long

The Endocannabinoid System Tonically Regulates Inhibitory Transmission and Depresses the Effect of Ethanol in Central Amygdala (full - 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904853/

Pharmacological characterization of GPR55, a putative cannabinoid receptor.
(full – 2010)

Anandamide and AM251, via water, modulate food intake at central and peripheral level in fish. (abst – 2010)

Involvement of ERK 1/2 activation in electroacupuncture pretreatment via cannabinoid CB1 receptor in rats. (abst – 2010)

The endocannabinoid system modulates the valence of the emotion associated to food ingestion (abst – 2010)

Cannabidiol (CBD) as an Anti-Arrhythmic – The Role of the CB1 Receptors
(news – 2010)

A Pilot Study into the Effects of the CB1 Cannabinoid Receptor Agonist WIN55,212-2 or the Antagonist/Inverse Agonist AM251 on Sleep in Rats (full – 2011) http://www.hindawi.com/journals/sd/2011/178469/

α-Tocopherol and α-tocopheryl phosphate interact with the cannabinoid system in the rodent hippocampus. (abst - 2011) http://www.ncbi.nlm.nih.gov/pubmed/21843633

Cannabidiol as an anti-arrhythmic, the role of the CB1 receptors. (abst – 2011) http://heart.bmj.com/content/97/24/e8.9.abstract

Endocannabinoid CB1 receptors modulate visual output from the thalamus. (abst – 2011) http://www.ncbi.nlm.nih.gov/pubmed/21773721

Cannabinoid Receptor Type 1 (CB1) Activation Inhibits Small GTPase RhoA Activity and Regulates Motility of Prostate Carcinoma Cells (full – 2012) http://endo.endojournals.org/content/153/1/29.full

A Role for the Cannabinoid 1 Receptor in Neuronal Differentiation of Adult Spinal Cord Progenitors in vitro is Revealed through Pharmacological Inhibition and Genetic Deletion. (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265030/?tool=pubmed

Cannabinoid HU210 Protects Isolated Rat Stomach against Impairment Caused by Serum of Rats with Experimental Acute Pancreatitis. (full - 2012) http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0052921

The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. (full – 2012) http://www.jbc.org/content/early/2012/11/16/jbc.M112.364109.long

Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB1 receptors (full – 2012) http://ajpregu.physiology.org/content/302/7/R876

Bidirectional regulation of endocannabinoid signaling in the amygdala contributes to activation and adaptation of the stress response (abst – 2012) http://www.journaldatabase.org/articles/bidirectional_regression.html

Opposing Roles for Cannabinoid Receptor Type-1 (CB(1)) and Transient Receptor Potential Vanilloid Type-1 Channel (TRPV1) on the Modulation of Panic-Like Responses in Rats. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/21937980

The interaction between intrathecal administration of low doses of palmitoylethanolamide and AM251 in formalin-induced pain related behavior and spinal cord IL1-β expression in rats. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/22201038

The anti-nausea effects of CB(1) agonists are mediated by an action at the visceral insular cortex. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/22671779

Effects of gonadal hormones on the peripheral cannabinoid receptor 1 (CB1R) system under a myositis condition in rats. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/22940464

Role of endocannabinoids and cannabinoid-1 receptors in cerebrocortical blood flow regulation. (full – 2013) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537620/
Activation of Type 1 Cannabinoid Receptor (CB1R) Promotes Neurogenesis in Murine Subventricular Zone Cell Cultures (full – 2013) http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0063529

A role for O-1602 and G protein-coupled receptor GPR55 in the control of colonic motility in mice. (full – 2013) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677091/

CB1 and CB2 Cannabinoid Receptor Agonists Induce Peripheral Antinociception by Activation of the Endogenous Noradrenergic System. (full – 2013) http://journals.lww.com/anesthesia-analgesia/Fulltext/2013/02000/0/CB1_and_CB2_Cannabinoid_Receptor_Agonists_Induce_31.aspx

Cannabinoid HU210 Protects Isolated Rat Stomach against Impairment Caused by Serum of Rats with Experimental Acute Pancreatitis (full – 2013) http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0052921

Involvement of prelimbic medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-induced antinociception elicited by GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei: role of the endocannabinoid CB1 receptor. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23521775

2-AG into the lateral hypothalamus increases REM sleep and cFos expression in melanin concentrating hormone neurons in rats. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23603032

Impact of omega-6 polyunsaturated fatty acid supplementation and γ-aminobutyric acid on astrogliogenesis through the endocannabinoid system. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23633391

Effects of compounds that interfere with the endocannabinoid system on behaviors predictive of anxiolytic and panicolytic activity in the elevated T-maze (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23711591

Regulation of cell proliferation by GPR55/cannabinoid receptors using (R,R')-4'-methoxy-1-naphthylfenoterol in rat C6 glioma cell line (abst – 2013) http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=695437a2-7613-4bef-8697-2294df2da859&cKey=18ba6eb0-2c5f-4004-a56f-2d1f450e2ed1&mKey=9b2d28e7-24a0-466f-a3c9-07c21f6e9be9

(R,R')-4'-methoxy-1-naphthylfenoterol Inhibits GPR55 signaling and the modulation of motility in human cancer cells (abst – 2013) http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=25370896-7d13-4f15-be76-f664d79b577d&cKey=87b7fece1-45cc-42b7-aca7-48c6b1d42773&mKey=9b2d28e7-24a0-466f-a3c9-07c21f6e9be9

Anandamide modulates the neuroendocrine responses induced by extracellular volume expansion.

Activation of spinal cannabinoid cb2 receptors inhibits neuropathic pain in streptozotocin-induced diabetic mice.

Complex interaction between anandamide and the nitrergic system in the dorsolateral periaqueductal gray to modulate anxiety-like behavior in rats.

Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: Influence on cholinergic toxicity.

Novel effects of the cannabinoid inverse agonist AM 251 on parameters related to metabolic syndrome in obese Zucker rats.

CB1 and CB2 Cannabinoid Receptor Antagonists Prevent Minocycline-Induced Neuroprotection Following Traumatic Brain Injury in Mice.

The endocannabinoid anandamide induces apoptosis of rat decidual cells through a mechanism involving ceramide synthesis and p38 MAPK activation.

A role for the endocannabinoid system in exercise-induced spatial memory enhancement in mice.

The endocannabinoid system mediates aerobic exercise-induced antinociception in rats.

Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB1 and CB2 receptors.

Angiotensin II-induced activation of central AT1 receptors exerts endocannabinoid-mediated gastroprotective effect in rats.

Cannabinoid Receptor Activation Prevents the Effects of Chronic Mild Stress on Emotional Learning and LTP in a Rat Model of Depression.

Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death.

Impact of omega-6 polyunsaturated fatty acid supplementation and γ-aminobutyric acid on astrogliogenesis through the endocannabinoid system (abst – 2013) http://onlinelibrary.wiley.com/doi/10.1002/jnr.23231/abstract

AM- 281 - CB1 antagonist and inverse agonist

The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors (abst – 2005) http://www.sciencedirect.com/science/article/pii/S00142999905013178

The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. (full – 2009) http://www.fasebj.org/content/23/1/183.long

GPR55 ligands promote receptor coupling to multiple signalling pathways. (full – 2010) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931561/?tool=pubmed

Expression of cannabinoid CB1 receptors by vagal afferent neurons: kinetics and role in influencing neurochemical phenotype (full – 2010) http://ajpgi.physiology.org/content/299/1/G63.full?sid=fc6948f0-78cf-405c-981b-afaa05ee417c

Cannabinoid receptor-dependent and -independent anti-proliferative effects of omega-3 ethanolamides in androgen receptor-positive and -negative prostate cancer cell lines. (full – 2010) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930808/?tool=pubmed

Angiotensin II induces vascular endocannabinoid release, which attenuates its vasoconstrictor effect via CB1 cannabinoid receptors. (full – 2012) http://www.jbc.org/content/early/2012/07/11/jbc.M112.346296.full.pdf+html

Early Endogenous Activation of CB1 and CB2 Receptors after Spinal Cord Injury Is a Protective Response Involved in Spontaneous Recovery (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496738/

The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. (full – 2012) http://www.jbc.org/content/early/2012/11/16/jbc.M112.364109.long

Endogenous cannabinoid receptor CB1 activation promotes vascular smooth muscle cell proliferation and neointima formation. (full – 2013) http://www.jlr.org/content/early/2013/03/11/jlr.M035147.long
Monoacylglycerol Lipase (MAGL) Inhibition Attenuates Acute Lung Injury in Mice. (full – 2013) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808422/

GPR55 and its interaction with membrane lipids: comparison with other endocannabinoid-binding receptors. (link to PDF - 2013) http://www.eurekaselect.com/105678/article

AM-404 – cannabinoid transport inhibitor, made in the body from acetaminophen- See ACETAMINOPHEN

Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172. (full – 2004) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC423268/

Synergistic Interactions between Cannabinoids and Environmental Stress in the Activation of the Central Amygdala (full - 2005)
http://www.nature.com/npp/journal/v30/n3/full/1300535a.html

Enhancing Cannabinoid Neurotransmission Augments the Extinction of Conditioned Fear (full - 2005)
http://www.nature.com/npp/journal/v30/n3/full/1300655a.html

Conversion of acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in the nervous system. (full – 2005)
http://www.jbc.org/content/280/36/31405.long

Anxiolytic-like properties of the anandamide transport inhibitor AM404. (full – 2006)
http://www.nature.com/npp/journal/v31/n12/full/1301061a.html

The Endogenous Cannabinoid Anandamide Produces δ-9-Tetrahydrocannabinol-Like Discriminative and Neurochemical Effects That Are Enhanced by Inhibition of Fatty Acid Amide Hydrolase but Not by Inhibition of Anandamide Transport (full - 2007)
http://jpet.aspetjournals.org/content/321/1/370.full

Δ9-Tetrahydrocannabinol (THC) and AM 404 protect against cerebral ischaemia in gerbils through a mechanism involving cannabinoid and opioid receptors (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189998/?tool=pmcentrez

STUDIES OF ANANDAMIDE ACCUMULATION INHIBITORS IN CEREBELLAR GRANULE NEURONS (full – 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248273/

Pharmacological enhancement of endocannabinoid signaling reduces the cholinergic toxicity of diisopropylfluorophosphate. (full – 2008)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659532/

Pro-drugs for indirect cannabinoids as therapeutic agents. (abst – 2008)

Pharmacological elevation of anandamide impairs short-term memory by altering the neurophysiology in the hippocampus. (abst – 2011)

The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotine-induced dopamine elevations in the nucleus accumbens shell in rats (full – 2011)

Role of endocannabinoid and glutamatergic systems in DOI-induced head-twitch response in mice. (abst – 2011)

Acetaminophen differentially enhances social behavior and cortical cannabionoid levels in inbred mice. (full – 2012)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389197/
Endocannabinoid analogues exacerbate marble-burying behavior in mice via TRPV1 receptor.

Effects of the anandamide uptake blocker AM404 on food intake depend on feeding status and route of administration.

Inhibition of fatty acid amide hydrolase by URB597 attenuates the anxiolytic-like effect of acetaminophen in the mouse elevated plus-maze test.

Peripheral antinociceptive effect of anandamide and drugs that affect the endocannabinoid system on the formalin test in normal and streptozotocin-diabetic rats.

Involvement of the Endocannabinoid System in Ethanol-Induced Corticostriatal Synaptic Depression.

Diuretic effects of cannabinoids.
(full – 2013) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533417/

AM404 attenuates reinstatement of nicotine seeking induced by nicotine-associated cues and nicotine priming but does not affect nicotine- and food-taking.

Diuretic effects of cannabinoid agonists in mice.

AM-630 – CB2 antagonist

Cannabinoid CB2 receptor activation reduces mouse myocardial ischemia-reperfusion injury: involvement of cytokine/chemokines and PMN

Inhibition of Inflammatory Hyperalgesia by Activation of Peripheral CB2 Cannabinoid Receptors

Species comparison and pharmacological characterization of rat and human CB2 cannabinoid receptors.
Antinociceptive effect of cannabinoid agonist WIN 55,212–2 in rats with a spinal cord injury (full - 2006) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1861843/?tool=pmcentrez

The local antinociceptive effects of paracetamol in neuropathic pain are mediated by cannabinoid receptors (abst – 2007) http://www.sciencedirect.com/science/article/pii/S0014299907007935

Regulation of Bone Mass, Osteoclast Function, and Ovariectomy-Induced Bone Loss by the Type 2 Cannabinoid Receptor (full - 2008) http://press.endocrine.org/doi/full/10.1210/en.2008-0150

Attenuation of Experimental Autoimmune Hepatitis by Exogenous and Endogenous Cannabinoids: Involvement of Regulatory T Cells (full - 2008) http://molpharm.aspetjournals.org/content/74/1/20.full?maxtoshow=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=320&resourcetype=HWCIT#content-block

Cannabinoid CB2 Receptor Potentiates Obesity-Associated Inflammation, Insulin Resistance and Hepatic Steatosis (full - 2009) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688760/?tool=pubmed

Cannabinoid receptor-dependent and -independent anti-proliferative effects of omega-3 ethanolamides in androgen receptor-positive and -negative prostate cancer cell lines. (full – 2010) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930808/?tool=pubmed

Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (SAB378), a peripherally restricted cannabinoid CB1/CB2 receptor agonist, inhibits gastrointestinal motility but has no effect on experimental colitis in mice. (full – 2010) http://jpet.aspetjournals.org/content/334/3/973.long

A nonsynonymous polymorphism in cannabinoid CB2 receptor gene is associated with eating disorders in humans and food intake is modified in mice by its ligands.
Brain cannabinoid CB2 receptors modulate cocaine's actions in mice
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164946/

Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10(-/-) mice by attenuating the activation of T cells and promoting their apoptosis.

Cannabinoid-2 Receptor Activation Protects against Infarct and Ischemia/Reperfusion Heart Injury.

The role of central CB2 cannabinoid receptors on food intake in neonatal chicks

Cannabinoid receptor type 2 activation yields delayed tolerance to focal cerebral ischemia.

Effects of a Selective Cannabinoid CB2 Agonist and Antagonist on Intravenous Nicotine Self Administration and Reinstatement of Nicotine Seeking.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266883/?tool=pubmed

Early Endogenous Activation of CB1 and CB2 Receptors after Spinal Cord Injury Is a Protective Response Involved in Spontaneous Recovery
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496738/

The role of CB2 receptor ligands in human eosinophil function

The maintenance of cisplatin- and paclitaxel-induced mechanical and cold allodynia is suppressed by cannabinoid CB2 receptor activation and independent of CXCR4 signaling in models of chemotherapy-induced peripheral neuropathy.
http://www.molecularpain.com/content/8/1/71

Effect of omega-3 polyunsaturated fatty acids on the endocannabinoid system in osteoblast-like cells and muscle
http://docs.lib.purdue.edu/dissertations/AAI3444794/

Cannabinoids and muscular pain. Effectiveness of the local administration in rat.

Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB(1) receptor-mediated anti-inflammatory effects.

Cannabinoid receptor 2 agonist ameliorates mesenteric angiogenesis and portosystemic collaterals in cirrhotic rats.

Electroacupuncture reduces the expression of proinflammatory cytokines in inflamed skin tissues through activation of cannabinoid CB2 receptors. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/22337285

Monoacylglycerol Lipase (MAGL) Inhibition Attenuates Acute Lung Injury in Mice. (full – 2013) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808422/

CB1 and CB2 Cannabinoid Receptor Agonists Induce Peripheral Antinociception by Activation of the Endogenous Noradrenergic System. (full – 2013) http://journals.lww.com/anesthesia-analgesia/Fulltext/2013/02000/CB1_and_CB2_Cannabinoid_Receptor_Agonists_Induce.31.aspx

Diuretic effects of cannabinoids. (full – 2013) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533417/

Targeting the Endocannabinoid System to Treat Sepsis (review – 2013) http://www.signavitae.com/articles/review-articles/222-targeting-the-endocannabinoid-system-to-treat-sepsis

Mechanisms Of Cannabidiol Neuroprotection In Hypoxic-Ischemic Newborn Pigs: Role Of 5HT1A And CB2 Receptors. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23587650

PPARγ mediates the effects of WIN55,212-2, an synthetic cannabinoid, on the proliferation and apoptosis of the BEL-7402 hepatocarcinoma cells. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/24062073

Increase of mesenchymal stem cell migration by Cannabidiol via activation of p42/44 MAPK. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/24304686

Activation of cortical type 2 cannabinoid receptors ameliorates ischemic brain injury (news – 2013) http://www.sciencedaily.com/releases/2013/02/130221141140.htm

AM -678 - see JWH -100

AM-694 – CB1 & CB2 agonist

Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings (abst – 2012)

Synthetic Cannabinoids - The Challenges of Testing for Designer Drugs
(article – 2013)

Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB1.
(abst – 2013)

A Case of Cannabinoid Hyperemesis Syndrome Caused by Synthetic Cannabinoids.
(abst – 2013)

Simultaneous quantification of 20 synthetic cannabinoids and 21 metabolites, and semi-quantification of 12 alkyl hydroxy metabolites in human urine by liquid chromatography-tandem mass spectrometry.
(abst – 2013)

AM-1172 - anandamide transport inhibitor

Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172.
(full – 2004)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC423268/

New molecule may be basis for drugs that battle overeating and drug dependency
(news – 2004)

Easing anxiety with anandamide
(news – 2004)

Anandamide Compound Targets Brain's 'Bliss' System
(news – 2005)
http://alcoholism.about.com/od/cure/a/blnida050112.htm

STUDIES OF ANANDAMIDE ACCUMULATION INHIBITORS IN CEREBELLAR GRANULE NEURONS
(full – 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248273/
AM-1220 – potent CB1 agonist, weak CB2 agonist

Hair analysis as a tool to evaluate the prevalence of synthetic cannabinoids in different populations of drug consumers. (abst – 2013)

AM-1241 - CB2 agonist

Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: Pain inhibition by receptors not present in the CNS (full - 2003)
http://www.pnas.org/content/100/18/10529.full

Inhibition of Inflammatory Hyperalgesia by Activation of Peripheral CB2 Cannabinoid Receptors (full – 2003)

CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids (full - 2005) http://www.pnas.org/content/102/8/3093.full

In vitro pharmacological characterization of AM1241: a protean agonist at the cannabinoid CB2 receptor? (full - 2006) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2013801/?tool=pubmed

The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset (full - 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819701/?tool=pmcentrez

Peripheral Cannabinoids Attenuate Carcinoma Induced Nociception in Mice (full - 2008) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771220/

Selective Activation of Cannabinoid CB2 Receptors Suppresses Neuropathic Nociception Induced by Treatment with the Chemotherapeutic Agent Paclitaxel in Rats (full - 2008)
The endocannabinoid system in amyotrophic lateral sclerosis. (abst - 2008)

Activation of the cannabinoid 2 receptor (CB2) protects against experimental colitis. (full - 2009)

Spinal and peripheral analgesic effects of the CB cannabinoid receptor agonist AM1241 in two models of bone cancer-induced pain. (full - 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931557/?tool=pubmed

A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss. (abst - 2010)

Cannabinoids attenuate cancer pain and proliferation in a mouse model. (full - 2011)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099480/?tool=pubmed

Self-medication of a cannabinoid CB(2) agonist in an animal model of neuropathic pain. (full – 2011)

Regulation of hematopoietic stem cell trafficking and mobilization by the endocannabinoid system. (abst – 2011)

Cannabinoid receptor 2 and its agonists mediate hematopoiesis and hematopoietic stem and progenitor cell mobilization. (abst – 2011)

Antinociceptive effects induced through the stimulation of spinal cannabinoid type 2 receptors in chronically inflamed mice (abst - 2011)
http://www.unboundmedicine.com/medline/ebm/record/21771590/abstract/Antinociceptive_effects_induced_through_the_stimulation_of_spinal_cannabinoid_type_2_receptors_in_chronically_inflamed_mice

Effects of a Selective Cannabinoid CB2 Agonist and Antagonist on Intravenous Nicotine Self Administration and Reinstatement of Nicotine Seeking. (full – 2012)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266883/?tool=pubmed

Prevention of Fibrosis Progression in CCl4-Treated Rats: Role of the Hepatic Endocannabinoid and Apelin Systems (full – 2012)
http://jpet.aspetjournals.org/content/340/3/629.full

Therapeutic modulation of cannabinoid lipid signaling: Metabolic profiling of a novel antinociceptive cannabinoid-2 receptor agonist. (abst – 2012)

Electroacupuncture reduces the expression of proinflammatory cytokines in inflamed skin tissues through activation of cannabinoid CB2 receptors. (abst – 2012)
Diuretic effects of cannabinoids. (full – 2013)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533417/

Cannabinoid Receptors as Therapeutic Targets for Dialysis-Induced Peritoneal Fibrosis. (abst – 2013)

Pharmacology of Cannabinoid Receptor Agonists and a Cyclooxygenase-2 Inhibitor in Rat Bone Tumor Pain. (abst – 2013)

CB2 cannabinoid agonist enhanced neurogenesis in GFAP/Gp120 transgenic mice displaying deficits in neurogenesis. (abst – 2013)

Diuretic effects of cannabinoid agonists in mice. (abst – 2013)

Effects of cannabinoid receptor type 2 on endogenous myocardial regeneration by activating cardiac progenitor cells in mouse infarcted heart. (link to PDF – 2014)

AM-1346 - CB1 agonist

Synthetic Cannabinoid May Aid Fertility In Smokers (news - 2006)
http://www.medicalnewstoday.com/articles/58063.php

Marijuana-like Chemical Can Restore Sperm Function Lost to Tobacco Abuse (news - 2006)
http://www.rxpgnews.com/specialtopics/article_5093.shtml

Cannabis-based boost for smokers’ suffering sperm (news - 2006) (may need registration)

Effects of AM1346, a high-affinity CB1 receptor selective anandamide analog, on open-field behavior in rats. (abst – 2007)

Discriminative stimulus functions in rats of AM1346, a high-affinity CB1R selective anandamide analog. (full – 2008)
http://www.springerlink.com/content/n278340k6q47141k/fulltext.html

Scientist Discovers New Molecule to Treat Chronic Pain (news - 2008)
AM-1710 – CB2 agonist

Pharmacological characterization of AM1710, a putative cannabinoid CB(2) agonist from the cannabilactone class: Antinociception without central nervous system side-effects. (full – 2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089437/pdf/nihms280008.pdf

The maintenance of cisplatin- and paclitaxel-induced mechanical and cold allodynia is suppressed by cannabinoid CB2 receptor activation and independent of CXCR4 signaling in models of chemotherapy-induced peripheral neuropathy (full – 2012) http://www.molecularpain.com/content/8/1/71

Intrathecal cannabilactone CB(2)R agonist, AM1710, controls pathological pain and restores basal cytokine levels. (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603341/

AM-2201 – CB1 agonist

Identification and Structural Elucidation of Four Cannabinimimetic Compounds (RCS-4, AM-2201, JWH-203 and JWH-210) in Seized Products (abst – 2013) http://jat.oxfordjournals.org/content/37/2/56.abstract?sid=7be65428-0ff8-4917-884b-c35f5a2819af

Analysis of AM-2201 and metabolites in a drugs and driving case (abst – 2013)

Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death (abst – 2013)

Identification and quantification of synthetic cannabinoids in 'spice-like' herbal mixtures: A snapshot of the German situation in the autumn of 2012. (full – 2014)

LC-QTOF-MS as a superior strategy to immunoassay for the comprehensive analysis of synthetic cannabinoids in urine. (abst – 2014)

Driving under the influence of synthetic cannabinoids ("Spice"): a case series. (abst – 2014)

Analysis of new classes of recreational drugs in sewage: Synthetic cannabinoids and amphetamine-like substances. (abst – 2014)

AM-2233 — CB1 agonist

F200A substitution in the third transmembrane helix of human cannabinoid CB1 receptor converts AM2233 from receptor agonist to inverse agonist. (abst – 2006)

Another nail in coffin of synthetic cannabis (news – 2011)

Characteristics of the designer drug and synthetic cannabinoid receptor agonist AM-2201 regarding its chemistry and metabolism. (abst – 2013)
AM-3506 – blocks the break-down of Anandamide

Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects. (full – 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003779/

Sulfonyl fluoride inhibitors of Fatty Acid amide hydrolase. (abst – 2012)

Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity (abst – 2012)

Acute reduction of anandamide-hydrolase (FAAH) activity is coupled with a reduction of nociceptive pathways facilitation in medication-overuse headache subjects after withdrawal treatment. (abst – 2012)

Role of endogenous cannabinoid system in the gut. (full - 2013)

AM-4054 – CB1 agonist

Behavioral Profile of the Novel Cannabinoid Agonist AM4054 (thesis - 2006)
http://digitalcommons.uconn.edu/cgi/viewcontent.cgi?article=1016&context=srhonors_theses&sei-redir=1#search=%22am-4054%20%2Bcannabinoid%22

Effects of a Selective Cannabinoid Agonist and Antagonist on Body Temperature in Rats (abst - 2007)
http://www.fasebj.org/cgi/content/meeting_abstract/21/5/A409?maxtoshow=&hits=80&RESULTFORMA=T=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=800&resourcetype=HWCIT

Diuretic effects of cannabinoids. (full – 2013)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533417/

Effects of anandamide and other CB1 ligands on cognitive function (abst – 2013)
http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/1097.107?sid=eea722c0-971c-4d9a-8b8c-38c063c19ad
Diuretic effects of cannabinoid agonists in mice. (abst – 2013)

Effects of a novel CB1 agonist on visual attention in male rats: Role of strategy and expectancy in task accuracy. (abst – 2013)

AM-4113 – CB1 antagonist

Effects of a Selective Cannabinoid Agonist and Antagonist on Body Temperature in Rats (abst - 2007)
http://www.fasebj.org/cgi/content/meeting_abstract/21/5/A409?maxtoshow=&hits=80&RESULTFORMA T=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=800&resourcetype=HWCIT

The neutral cannabinoid CB₁ receptor antagonist AM4113 regulates body weight through changes in energy intake in the rat. (abst – 2011)

AM-6545 – peripherally restricted CB1 antagonist, no “high”

Rehashing endocannabinoid antagonists: can we selectively target the periphery to safely treat obesity and type 2 diabetes? (full – 2010)

A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents (full – 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990160/

The novel cannabinoid CB1 antagonist AM6545 suppresses food intake and food-reinforced behavior. (full – 2010) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522179/

Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. (full – 2010) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912197/

Peripherally restricted CB1 receptor blockers. (abst – 2013)
AM- 6546 – CB1 antagonist

Endocannabinoid signaling in the gut mediates preference for dietary unsaturated fats.
(abst – 2013)

AM- 6701 – equally blocks the break-down of 2-AG and anandamide

Equipotent Inhibition of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase - Dual Targets of the Endocannabinoid System to Protect against Seizure Pathology.
(abst – 2012)

AM- 6702 - strongly blocks the break-down of anandamide, and, weakly, 2-AG

Equipotent Inhibition of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase - Dual Targets of the Endocannabinoid System to Protect against Seizure Pathology.
(abst – 2012)

AS- 1535907 - GPR119 agonist

The role of small molecule GPR119 agonist, AS1535907, in glucose-stimulated insulin secretion and pancreatic β-cell function
(abst – 2010)

Novel GPR119 agonist AS1535907 contributes to first-phase insulin secretion in rat perfused pancreas and diabetic db/db mice.
(abst – 2010)

AS- 1907417 - GPR119 agonist

AS1907417, a novel GPR119 agonist, as an insulinotropic and β-cell preservative agent for the treatment of type 2 diabetes.
(abst – 2010)
CANNABINOR - CB2 agonist

Pharmos Initiates Phase I Trial of CB2-Selective Drug Candidate Cannabinor

Cannabinoid Receptor Agonist Significantly Reduces Post-Operative Pain, Study Says

Cannabinor, a selective cannabinoid-2 receptor agonist, improves bladder emptying in rats with partial urethral obstruction. (full – 2010) http://www.jurology.com/article/S0022-5347(10)04713-0/fulltext

3 CARBOXAMIDO-5-ARYL-ISOXAZOLES – CB 2 agonists

CB – 65 - CB 2 agonist

The role of central CB2 cannabinoid receptors on food intake in neonatal chicks (abst – 2011) http://www.ncbi.nlm.nih.gov/pubmed/21927979

Study: Cannabis Agonists Produce Anti-Cancer Effects In Human Liver Cancer Cells (news – 2012)

CESAMET – see NABILONE

COMPONENT A - CB1/2 agonist that is excluded from the brain

CP 47,497 - CB1 & CB2 agonist

Cannabimimetic activity from CP-47,497, a derivative of 3-phenylcyclohexanol (abst - 1982)
http://jpet.aspetjournals.org/content/223/2/516.abstract?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=Hexahydrocannabinol&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT

The Conformational Properties of the Highly Selective Cannabinoid Receptor Ligand CP-55,940 (full - 1996)
http://www.ibc.org/content/271/18/10640.full?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=Hexahydrocannabinol&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT

Withdrawal Phenomena and Dependence Syndrome After the Consumption of "Spice Gold" (full - 2009) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719097/?tool=pmcentrez

Spice drugs: cannabinoids as a new designer drugs. (abst - 2009) http://www.unboundmedicine.com/medline/ebm/record/19718488/abstract/%5BSpice_drugs:_cannabinoids_as_a_new_designer_drugs_%5D

Pharmacological properties and dependence liabilities of synthetic cannabinoids (abst – 2010)
http://www.unboundmedicine.com/medline/ebm/record/20681249/abstract/%5BPharmacological_properties_and_dependence_liabilities_of_synthetic_cannabinoids%5D

College students and use of K2: an emerging drug of abuse in young persons (full – 2011) http://www.substanceabusepolicy.com/content/6/1/16

Marijuana-based Drugs: Innovative Therapeutics or Designer Drugs of Abuse? (full – 2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139381/?tool=pubmed

CP47,497-C8 and JWH073, commonly found in 'Spice' herbal blends, are potent and efficacious CB(1) cannabinoid receptor agonists. (abst – 2011) http://www.ncbi.nlm.nih.gov/pubmed/21333643

Use of high-resolution accurate mass spectrometry to detect reported and previously unreported cannabinomimetics in "herbal high" products. (abst – 2011) http://www.ncbi.nlm.nih.gov/pubmed/20529459
Effects of synthetic cannabinoids on electroencephalogram power spectra in rats.
(abst – 2011)
http://www.unboundmedicine.com/medline/ebm/record/21640532/abstract/Effects_of_synthetic_cannabinoids_on_electroencephalogram_power_spectra_in_rats

The emergence and analysis of synthetic cannabinoids.
(abst – 2011)

Chemicals Used in "Spice" and "K2" Type Products Now Under Federal Control and Regulation
(news – 2011)
http://www.justice.gov/dea/pubs/pressrel/pr030111.html

Outlawing ‘Legal Highs’: Can Emergency Bans Hinder Drug Development?
(news – 2011)

Characterization of In Vitro Metabolites of CP 47,497, a Synthetic Cannabinoid, in Human Liver Microsomes by LC-MS/MS.
(abst – 2012)

Detection and quantification of new designer drugs in human blood: part 1 - synthetic cannabinoids.
(abst – 2012)

The spice in France: mixed herbs containing synthetic cannabinoids.
(abst – 2012)

Acute toxicity due to the confirmed consumption of synthetic cannabinoids: Clinical and laboratory findings.
(abst – 2012)

“Spiceophrenia”: a systematic overview of “Spice”-related psychopathological issues and a case report
(full – 2013)

Getting up to speed with the public health and regulatory challenges posed by new psychoactive substances in the information age
(editorial – 2013)

Synthetic Cannabinoids -The Challenges of Testing for Designer Drugs
(article – 2013)

The K2/Spice Phenomenon: emergence, identification, legislation and metabolic characterization of synthetic cannabinoids in herbal incense products.
(abst – 2013)

Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death.
(abst – 2013)

CP 50,556-1 / LEVONANTRADOL - CB1 & CB2 agonist

Clinical experience with levonantradol hydrochloride in the prevention of cancer chemotherapy-induced nausea and vomiting. (abst – 1981)

Randomised Clinical Trial of Levonantradol and Chlorpromazine in the Prevention of Radiotherapy-induced Vomiting. (abst - 1982)

Levonantradol, a new antiemetic with a high rate of side-effects for the prevention of nausea and vomiting in patients receiving cancer chemotherapy. (abst – 1982)

Respiratory and cardiovascular depressant effects of nabilone, N-methyllevonantradol and delta 9-tetrahydrocannabinol in anesthetized cats. (abst - 1983)

Levonantradol: a synthetic cannabinoid in the treatment of severe chemotherapy-induced nausea and vomiting resistant to conventional anti-emetic therapy. (abst – 1983)

Antiemetic efficacy of levonantradol compared to delta-9-tetrahydrocannabinol for chemotherapy-induced nausea and vomiting. (abst – 1985)

Thujone exhibits low affinity for cannabinoid receptors but fails to evoke cannabimimetic responses. (abst – 1999)

Delta(9)-tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid CB(1) receptor antagonist/inverse agonist SR 141716A. (full – 2001)

Marijuana-based Drugs: Innovative Therapeutics or Designer Drugs of Abuse? (full – 2011)

Levonantradol: asymmetric synthesis and structural analysis. (abst – 2013)
CP 55,940 - CB1, CB2 & GPR-55 agonist

Molecular cloning of a human cannabinoid receptor which is also expressed in testis (full – 1991) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1151556/

Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. (full - 1992) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1907498/?tool=pmcentrez&page=1

Cross-tolerance between delta-9-tetrahydrocannabinol and the cannabimimetic agents, WIN 55,212-2 and anandamide. (full - 1993) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175863/?tool=pmcentrez&page=1

Involvement of Dynorphin B in the Antinociceptive Effects of the Cannabinoid CP55,940 in the Spinal Cord (full - 1997) http://jpet.aspetjournals.org/content/281/2/730.full

Cannabinoid Receptor Agonists Protect Cultured Rat Hippocampal Neurons from Excitotoxicity (full - 1998) http://molpharm.aspetjournals.org/content/54/3/459.full

Effects of cannabinoid receptor agonists on neuronally-evoked contractions of urinary bladder tissues isolated from rat, mouse, pig, dog, monkey and human (full - 2000) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571997/?tool=pmcentrez

Cannabinoid CB1-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation (full - 2001) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1572987/?tool=pmcentrez

The potent emetogenic effects of the endocannabinoid, 2-AG (2-arachidonoylglycerol) are blocked by delta(9)-tetrahydrocannabinol and other cannabinoids. (full – 2002)
http://jpet.aspetjournals.org/content/300/1/34.long

Chronic Morphine Modulates the Contents of the Endocannabinoid, 2-Arachidonoyl Glycerol, in Rat Brain (full - 2003)
http://www.nature.com/npp/journal/v28/n6/full/1300117a.html

Inhibition of guinea-pig and human sensory nerve activity and the cough reflex in guinea-pigs by cannabinoid (CB2) receptor activation. (full - 2003)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574031/?tool=pubmed

CANNABINOIDS ALTER RECOGNITION MEMORY IN RATS (full – 2003)

Synergistic Interactions between Cannabinoids and Environmental Stress in the Activation of the Central Amygdala (full - 2005)
http://www.nature.com/npp/journal/v30/n3/full/1300535a.html

Binding affinity and agonist activity of putative endogenous cannabinoids at the human neocortical CB1 receptor (abst – 2005)

Effects of repeated administration with CP-55,940, a cannabinoid CB1 receptor agonist on the metabolism of the hepatic heme. (abst – 2005)

Endocannabinoids -- The Brain's Cannabis -- Demonstrate Novel Modes Of Action To Stress (news - 2005)

Chronologically overlapping occurrences of nicotine-induced anxiety- and depression-related behavioral symptoms: effects of anxiolytic and cannabinoid drugs (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2075518/?tool=pubmed

Control of spasticity in a multiple sclerosis model is mediated by CB1, not CB2, cannabinoid receptors. (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189718/?tool=pubmed

The orphan receptor GPR55 is a novel cannabinoid receptor. (full – 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2095107/?tool=pubmed

Spinal cannabinoid receptor type 2 activation reduces hypersensitivity and spinal cord glial activation after paw incision. (full - 2007)
http://journals.lww.com/anesthesiology/Fulltext/2007/04000/Spinal_Cannabinoid_Receptor_Type_2_Activ ation.21.aspx
Virodhamine and CP55,940 modulate cAMP production and IL-8 release in human bronchial epithelial cells. (full – 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2042924/?tool=pubmed

CB2 receptors in the brain: role in central immune function (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219530/?tool=pmcentrez

Cannabinoids enhance gastric X/A-like cells activity. (full – 2008)

Attenuation of Experimental Autoimmune Hepatitis by Exogenous and Endogenous Cannabinoids: Involvement of Regulatory T Cells (full - 2008)
http://molpharm.aspetjournals.org/content/74/1/20.full?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=320&resourceatype=HWCT#content-block

Cannabinoids Inhibit HIV-1 Gp120-Mediated Insults in Brain Microvascular Endothelial Cells (full - 2008)
http://www.jimmunol.org/cgi/content/full/181/9/6406?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=160&resourceatype=HWCT

Evaluation of Delta9 -Tetrahydrocannabinol and other Cannabinoids for Antidepressant-like Actions in the Mouse Forced Swim Test (abst – 2008)

Inhibition of fatty acid amide hydrolase, a key endocannabinoid metabolizing enzyme, by analogues of ibuprofen and indomethacin. (abst – 2009) http://www.ncbi.nlm.nih.gov/pubmed/17397826

International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2 (full – 2010)
http://pharmrev.aspetjournals.org/content/62/4/588.full.pdf+html

Attenuation of morphine antinociceptive tolerance by a CB(1) receptor agonist and an NMDA receptor antagonist: Interactive effects. (full – 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813317/?tool=pubmed
Cannabinoid inhibition of macrophage migration to the trans-activating (Tat) protein of HIV-1 is linked to the CB(2) cannabinoid receptor. (full – 2010) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846023/?tool=pubmed

The expression level of CB1 and CB2 receptors determines their efficacy at inducing apoptosis in astrocytomas. (full - 2010) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806825/?tool=pubmed

Sex Differences in Cannabinoid 1 vs. Cannabinoid 2 Receptor-Selective Antagonism of Antinociception Produced by Δ9-Tetrahydrocannabinol and CP55,940 in the Rat (full – 2011) http://jpet.aspetjournals.org/content/340/3/787.full

The schizophrenia susceptibility gene neuregulin 1 modulates tolerance to the effects of cannabinoids. (abst – 2011) http://www.unboundmedicine.com/medline/ebm/record/20701826/abstract/The_schizophrenia_susceptibility_gene_neuregulin_1_modulates_tolerance_to_the_effects_of_cannabinoids

A synthetic cannabinoid, CP55940, inhibits lipopolysaccharide-induced cytokine mRNA expression in a cannabinoid receptor-independent mechanism in rat cerebellar granule cells. (abst – 2011) http://www.unboundmedicine.com/medline/ebm/record/21492165/abstract/A_synthetic_cannabinoid_CP55940_inhibits_lipopolysaccharide_induced_cytokine_mRNA_expression_in_a_cannabinoid_receptor_independent_mechanism_in_rat_cerebellar_granule_cells
Allosteric modulator ORG27569 induces a CB1 Cannabinoid receptor high affinity agonist binding state, receptor internalization and Gi-independent ERK1/2 activation. (full – 2012) http://www.jbc.org/content/early/2012/02/16/jbc.M111.316463.long

Acetaminophen differentially enhances social behavior and cortical cannabinoid levels in inbred mice. (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389197/

Contrasting effects of different cannabinoid receptor ligands on mouse ingestive behavior (abst – 2012) http://www.unboundmedicine.com/medline/ebm/record/22772336/abstract/Contrasting_effects_of_differen_t_cannabinoid_receptor_ligands_on_mouse_ingestive_behaviour

Interactions between mu opioid receptor agonists and cannabinoid receptor agonists in rhesus monkeys: antinociception, drug discrimination, and drug self-administration. (full – 2013) http://jpet.aspetjournals.org/content/early/2013/03/27/jpet.113.204099.long

Novel Insights Into CB1 Cannabinoid Receptor Signaling: A Key Interaction Identified Between EC3-Loop and TMH2. (full – 2013) http://jpet.aspetjournals.org/content/early/2013/02/21/jpet.112.201046.long

Interactions between mu opioid receptor agonists and cannabinoid receptor agonists CP55940 and WIN55212-2 in rhesus monkeys: evaluation of treatment- and abuse-related effects (abst – 2013)
http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/1097.3?sid=7a3e6978-9a8c-4319-bca1-9f80fed2445f

Working memory- and anxiety-related behavioral effects of repeated nicotine as a stressor: the role of cannabinoid receptors. (abst – 2013)

Distinct roles of β-arrestin 1 and β-arrestin 2 in ORG27569-induced biased signaling and internalization of the cannabinoid receptor one (CB1) (abst – 2013)

Changes in cannabinoid CB1 receptor functionality in the female rat prefrontal cortex following a high fat diet. (abst – 2013)

Long-term CB1 receptor blockade enhances vulnerability to anxiogenic-like effects of cannabinoids. (abst – 2013)

Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors. (abst – 2013)

Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB1 receptors: implications for schizophrenia. (abst – 2013)

G-Protein Receptor Kinase 5 Regulates the Cannabinoid Receptor 2-Induced Upregulation of Serotonin 2A Receptors. (abst – 2013)

Cannabinoid receptor activation in the nucleus tractus solitaries produces baroreflex-like responses in the rat. (abst – 2013)

Regulation of cell proliferation by GPR55/cannabinoid receptors using (R,R’)-4’-methoxy-1-naphthylfenoterol in rat C6 glioma cell line (abst – 2013)
http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=695437a2-7613-4bef-8697-2294df2da859&cKey=18ba6eb0-2c5f-4004-a56f-2d1f450e2ed1&mKey=9b2d28e7-24a0-466f-a3c9-07c21f6e9be9

Real-time characterisation of Cannabinoid Receptor 1 (CB1) allosteric modulators reveals novel mechanism of action. (abst – 2013)

Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death. (abst – 2013)
The agonist binding mechanism of human CB2 receptor studied by molecular dynamics simulation, free energy calculation and 3D-QSAR studies. (abst – 2013)

Cannabinoids inhibit cholinergic contraction in human airways through prejunctional CB1 receptors. (abst – 2014)

CRA–13 - CB1 & CB2 agonist

Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone: a potent, orally bioavailable human CB1/CB2 dual agonist with antihyperalgesic properties and restricted central nervous system penetration. (abst – 2007)

Cannabinoid Receptor Agonist 13, a Novel Cannabinoid Agonist: First in Human Pharmacokinetics and Safety (full – 2009)
http://dmd.aspetjournals.org/content/37/4/827.full

Intestinal lymphatic transport enhances the post-prandial oral bioavailability of a novel cannabinoid receptor agonist via avoidance of first-pass metabolism. (abst – 2009)

CT–3 – see AJULMIC ACID

DH-CBD / DEHYDROXYLCANNABIDIOL - a nonpsychoactive cannabinoid

Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease. (abst – 2014)

DEXANABINOL - see HU-211

DRONABINOL – see MARINOL
ELMIRIC ACIDS - anandamide analogs

The elmiric acids: biologically active anandamide analogs (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2621443/?tool=pmcentrez

Potential anti-inflammatory actions of the elmiric (lipoamino) acids (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1896102/?tool=pmcentrez

Cannabinoids, Endocannabinoids, and Related Analogs in Inflammation (full - 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664885/?tool=pubmed

ETS-2101 - see HU-211

GP1a - CB2 agonist

Immunoregulation of a CB2 receptor agonist in a murine model of neuroAIDS. (full – 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109320/

Distribution and function of the endocannabinoid system in the rat and human bladder. (abst – 2012)

Activation of Cannabinoid Receptor 2 Inhibits Experimental Cystitis. (abst – 2013)

Attenuation of HIV-1 replication in macrophages by cannabinoid receptor 2 agonists. (abst – 2013)

Treatment with a Cannabinoid Receptor 2 Agonist Decreases Severity of Established Cystitis. (abst – 2013)

Selective CB2 receptor activation ameliorates EAE by reducing Th17 differentiation and immune cell accumulation in the CNS. (abst – 2013)
GW405833 – a potent partial CB2 agonist

Intrathecal injection of a Cannabinoid CB2 Receptor Selective Agonist GW405833 Blocks Induction of Allodynia by Sciatic Inflammatory Neuritis (SIN)
(fast – 2009)

Brain cannabinoid CB2 receptors modulate cocaine's actions in mice
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164946/
(fast – 2011)

Cannabinoid Receptor 2 Protects against Acute Experimental Sepsis in Mice.
http://www.hindawi.com/journals/mi/2013/741303/
(fast – 2013)

Endocannabinoid signaling in the gut mediates preference for dietary unsaturated fats.
(fast – 2013)

Effects of the cannabinoid 2 receptor-selective agonist GW405833 in assays of acute pain-stimulated and paindepressed behavior in rats
http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/886.9?sid=eea722c0-971c-4daa-8b8c-38c063c19ad
(fast – 2013)

HEXAHYDROCANNABINOLS - cannabinoid derivatives

Hexahydrocannabinols, novel synthetic cannabinoid derivatives, suppress the tumor growth by inhibiting the VEGF secretion and angiogenesis
http://www.fasebj.org/cgi/content/meeting_abstract/23/1_MeetingAbstracts/761.3?maxtoshow=&hits=10&RESULTFORMAT=&fulltext=cannabinoid&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortsource=relevance&resourcetype=HWCIT
(fast - 2009)

Involvement of NSAID-activated gene-1 in a novel synthetic hexahydrocannabinol analogue-induced growth inhibition and apoptosis of colon cancer cells
http://www.fasebj.org/cgi/content/meeting_abstract/24/1_MeetingAbstracts/965.8?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=Hexahydrocannabinol&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT
(fast - 2010)

Induction of p53-independent apoptosis by a novel synthetic hexahydrocannabinol analog is mediated via Sp1-dependent NSAID-activated gene-1 in colon cancer cells
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T4P-4YM7FF0-2&_user=10&_coverDate=07%2F01%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&searchStrId=13166821607_reunOrigins=scholar.google&_accnt=C0000502216&version=1&_urlVersion=0&_userid=10&md5=6f222e39268f6e27444674d5217dceeb
(fast - 2010)
Novel hexahydrocannabinol analogs as potential anti-cancer agents inhibit cell proliferation and tumor angiogenesis. (abst – 2011)

Anti-tumor activity of the novel hexahydrocannabinol analog LYR-8 in Human colorectal tumor xenograft is mediated through the inhibition of Akt and hypoxia-inducible factor-1α activation. (full – 2012)
https://www.jstage.jst.go.jp/article/bpb/35/6/35_b12-00020/_pdf

HU-210 - CB 1 & CB 2 agonist, over 100 times stronger than THC

Learning impairment produced in rats by the cannabinoid agonist HU 210 in a water-maze task. (abst – 1999)

Suppression of Nerve Growth Factor Trk Receptors and Prolactin Receptors by Endocannabinoids Leads to Inhibition of Human Breast and Prostate Cancer Cell Proliferation (full - 2000)

Effects of cannabinoid receptor agonists on neuronally-evoked contractions of urinary bladder tissues isolated from rat, mouse, pig, dog, monkey and human (full - 2000)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571997/?tool=pmcentrez

Involvement of central and peripheral cannabinoid receptors in the regulation of heart resistance to arrhythmogenic effects of epinephrine. (abst - 2000)

Inhibitory effects of the cannabinoid agonist HU 210 on rat sexual behaviour. (abst – 2000)

Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease (full - 2002)
http://bloodjournal.hematologylibrary.org/cgi/content/full/100/2/627?ijkey=eb71d6d7a06f311440761cfac6a7d081bce2771d

Influence of the CB1 receptor antagonist, AM 251, on the regional haemodynamic effects of WIN-55212-2 or HU 210 in conscious rats (full - 2002)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573379/?tool=pmcentrez

Activation of cannabinoid receptors decreases the area of ischemic myocardial necrosis. (abst - 2002)
Increase of the heart arrhythmogenic resistance and decrease of the myocardial necrosis zone during activation of cannabinoid receptors (abst – 2002)

The cannabinoids R(-)-7-hydroxy-delta-6-tetra-hydrocannabinol-dimethylheptyl (HU-210), 2-O-arachidonylgllycerylether (HU-310) and arachidonyl-2-chloroethylamide (ACEA) increase isoflurane provoked sleep duration by activation of cannabinoids 1 (CB1)-receptors in mice. (abst – 2002)

Inhibition of tumor angiogenesis by cannabinoids (full - 2003)
http://www.fasebj.org/cgi/reprint/02-0795fjev1?maxtoshow=&hits=10&RESULTFORMAT=&fulltext=cannabis&andorexactfulltext=and&searchid=1&FIRSTINDEX=20&sortspec=relevance&resourcetype=HWCIT

CB1 cannabinoid receptor antagonism promotes remodeling and cannabinoid treatment prevents endothelial dysfunction and hypotension in rats with myocardial infarction (full - 2003)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573770/?tool=pmcentrez

http://stroke.ahajournals.org/cgi/reprint/34/8/2000

Histamine induced responses are attenuated by a cannabinoid receptor agonist in human skin. (abst – 2003)

The endogenous cannabinoid system protects against colonic inflammation (full - 2004)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC385396/?tool=pmcentrez

Cannabinoids spell relief in colon inflammation (news – 2004)

Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects (full - 2005)
http://www.jci.org/articles/view/25509/version/1

Direct cerebrovascular effects of CB1 receptor activation by the synthetic endocannabinoid HU-210 in vivo (abst - 2005)
http://www.nature.com/jcbfm/journal/v25/n1s/full/9591524.0581a.html

Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson's disease. (abst - 2005)

The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors (abst – 2005)

Is cannabis good for your brain? (news - 2005)
Study Shows Marijuana Promotes Neuron Growth (news - 2005)
http://english.ohmynews.com/articleview/article_view.asp?menu=c10400&no=253377&rel_no=1

Marijuana May Grow Neurons in the Brain (news - 2005)
http://www.medpagetoday.com/Psychiatry/AnxietyStress/1934

Surprising Brain Effects From Pot-Like Drug (news – 2005)

Marijuana might cause new cell growth in the brain (may need registration)
http://www.newscientist.com/article/dn8155

Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models (full - 2006)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1751298/?tool=pmcentrez

Cannabinoids Ameliorate Pain and Reduce Disease Pathology in Cerulein-Induced Acute Pancreatitis (full - 2007)

Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755791/?tool=pmcentrez

Cannabinoids Induce Glioma Stem-like Cell Differentiation and Inhibit Gliomagenesis (full - 2007)
http://www.jbc.org/content/282/9/6854.long

The synthetic cannabinoid HU210 induces spatial memory deficits and suppresses hippocampal firing rate in rats (full – 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2013991/

The synthetic cannabinoid HU-210 attenuates neural damage in diabetic mice and hyperglycemic pheochromocytoma PC12 cells (abst - 2007)

The synthetic cannabinoids attenuate allodynia and hyperalgesia in a rat model of trigeminal neuropathic pain. (abst – 2007)

Excitotoxicity in a chronic model of multiple sclerosis: Neuroprotective effects of cannabinoids through CB1 and CB2 receptor activation. (abst – 2007)

Cannabinoid receptor agonists are mitochondrial inhibitors: a unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. (abst – 2007)
Repeated Cannabinoid Injections into the Rat Periaqueductal Gray Enhances Subsequent Morphine Antinociception (full - 2008) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743428/?tool=pmcentrez

Cannabinoid receptor 1 is a potential drug target for treatment of translocation-positive rhabdomyosarcoma (full - 2009) http://mct.aacrjournals.org/content/8/7/1838.full

Spice drugs: cannabinoids as a new designer drugs. (abst - 2009) http://www.unboundmedicine.com/medline/ebm/record/19718488/abstract/%5BSpice_drugs:_cannabinoids_as_a_new_designer_drugs_%5D

Antitumorigenic Effects of Cannabinoids beyond Apoptosis (full - 2010) http://jpet.aspetjournals.org/content/332/2/336.full?sid=af53ea87-ab4b-426e-9c7e-8f750e9c4a17

Cannabinoid Receptor Type 1 Protects Nigrostriatal Dopaminergic Neurons against MPTP Neurotoxicity by Inhibiting Microglial Activation. (full – 2011) http://www.jimmunol.org/content/187/12/6508.full?sid=c3422dd2-7ad0-42e4-a862-845dc670f7cf

Cannabinoid HU210 Protects Isolated Rat Stomach against Impairment Caused by Serum of Rats with Experimental Acute Pancreatitis. (full - 2012) [http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0052921]

Contrasting effects of different cannabinoid receptor ligands on mouse ingestive behavior (abst – 2012) [http://www.unboundmedicine.com/medline/ebm/record/22772336/abstract/Contrasting_effects_of_different_cannabinoid_receptor_ligands_on_mouse_ingestive_behaviour]

The anti-nausea effects of CB(1) agonists are mediated by an action at the visceral insular cortex. (abst – 2012) [http://www.ncbi.nlm.nih.gov/pubmed/22671779]

Cannabinoid HU210 Protects Isolated Rat Stomach against Impairment Caused by Serum of Rats with Experimental Acute Pancreatitis (full – 2013) http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0052921

HU-211 / DEXANABINOL/ DEXANABINONE/ SINNABIDOL/ ETS-2101/ PA 50211/ PRS 211007 - CB 2 agonist

HU-211, a Novel Noncompetitive N-Methyl-D-Aspartate Antagonist, Improves Neurological Deficit and Reduces Infarct Volume After Reversible Focal Cerebral Ischemia in the Rat (full - 1995) http://stroke.ahajournals.org/cgi/content/full/26/12/2313

Protection Against Septic Shock and Suppression of Tumor Necrosis Factor α and Nitric Oxide Production by Dexanabinol (HU-211), a Nonpsychotropic Cannabinoid (full - 1997) http://jpet.aspetjournals.org/content/283/2/918.full

Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant. (abst – 1997) http://www.ncbi.nlm.nih.gov/pubmed/9042110

Dexanabinol: dexanabinone, HU 211, PA 50211, PRS 211007, sinnabidol.

Latest Studies Imply That Cannabinoids Are Protective Against Alcohol-Induced Brain Damage (news – 2011) http://networkedblogs.com/mFuuX

HU-308 - CB2 agonist

HU-308: a specific agonist for CB(2), a peripheral cannabinoid receptor. (full - 1999) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC24419/?tool=pubmed

Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation (full - 2005) http://www.fasebj.org/cgi/content/full/20/13/2405?maxtoshow=&hits=10&RESULTFORMAT=&fulltext=cannabis&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&resourcetype=HW

Peripheral cannabinoid receptor, CB2, regulates bone mass (full - 2005) http://www.pnas.org/content/103/3/696.full

Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation
Activation of CB2 receptor attenuates bone loss in osteoporosis (news - 2006)

Cannabinoid-2 receptor agonist HU-308 protects against hepatic ischemia/reperfusion injury by attenuating oxidative stress, inflammatory response, and apoptosis (full - 2007)
http://www.jleukbio.org/cgi/content/full/82/6/1382

Endocannabinoids, cannabinoid receptors and inflammatory stress: an interview with Dr. Pál Pacher (interview - 2007)
http://www.jleukbio.org/cgi/content/full/82/6/1390?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=880&resourcetype=HWCIT

Regulation of Bone Mass, Osteoclast Function, and Ovariectomy-Induced Bone Loss by the Type 2 Cannabinoid Receptor (full - 2008)

Gadolinium-HU-308-incorporated micelles. (full – 2011)

Is lipid signaling through cannabinoid 2 receptors part of a protective system? (full – 2011)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062638/

The Type 2 Cannabinoid Receptor Regulates Bone Mass and Ovariectomy-Induced Bone Loss by Affecting Osteoblast Differentiation and Bone Formation (full – 2011)

CB2 Cannabinoid Receptors Promote Neural Progenitor Cell Proliferation via mTORC1 Signaling (full – 2011)
http://www.jbc.org/content/287/2/1198.full

Cannabinoid-2 Receptor Activation Protects against Infarct and Ischemia/Reperfusion Heart Injury. (abst – 2011)

Cannabinoid receptor 2 activation reduces intestinal leukocyte recruitment and systemic inflammatory mediator release in acute experimental sepsis (full – 2012)
http://ccforum.com/content/16/2/R47

Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB(1) receptor-mediated anti-inflammatory effects. (abst - 2012)

Effect of omega-3 polyunsaturated fatty acids on the endocannabinoid system in osteoblast-like cells and muscle (abst – 2012)
http://docs.lib.purdue.edu/dissertations/AAI3444794/

Characterization of bladder function in a cannabinoid receptor type 2 knockout mouse in vivo and in vitro. (abst – 2013)
Prospects for cannabinoid therapies in viral encephalitis. (abst – 2013)

Expression of cannabinoid receptor 2 and its inhibitory effects on synovial fibroblasts in rheumatoid arthritis. (abst – 2014)

HU-310 – CB 1 agonist

The cannabinoids R(-)-7-hydroxy-delta-6-tetra-hydrocannabinol-dimethylheptyl (HU-210), 2-O-arachidonoylglycerylether (HU-310) and arachidonyl-2-chloroethylamide (ACEA) increase isoflurane provoked sleep duration by activation of cannabinoids 1 (CB1)-receptors in mice. (abst – 2002)

HU-320 – chemically related to CBD, mechanism of action not established

A novel synthetic, nonpsychoactive cannabinoid acid (HU-320) with antiinflammatory properties in murine collagen-induced arthritis. (full - 2004)

HU-320 identified as a novel synthetic cannabinoid with therapeutic activity in an experiment model of rheumatoid arthritis (news – 2004)

HU-239- see Ajulemic Acid

HU-331 – derived from cannabidiol (CBD), mechanism of action not established

A cannabinoid quinone inhibits angiogenesis by targeting vascular endothelial cells. (full - 2006)
http://molpharm.aspetjournals.org/content/70/1/51.long

A Cannabinoid Anticancer Quinone, HU-331, Is More Potent and Less Cardiotoxic Than Doxorubicin: A Comparative in Vivo Study (full - 2007)
http://jpet.aspetjournals.org/content/322/2/646.full
HU-331, a novel cannabinoid-based anticancer topoisomerase II inhibitor (full - 2007)
http://mct.aacrjournals.org/content/6/1/173.long

HU-331: a cannabinoid quinone, with uncommon cytotoxic properties and low toxicity.
(abst - 2007)

Antitumorigenic Effects of Cannabinoids beyond Apoptosis (full - 2010)
http://jpet.aspetjournals.org/content/332/2/336.full?sid=af53ea87-ab4b-426e-9c7e-8f750e9c4a17

HU-910 – CB2 agonist

A new cannabinoid 2 receptor agonist HU-910 attenuates oxidative stress, inflammation, and cell death associated with hepatic ischemia/reperfusion injury.
(abst – 2011)

JD5037 - CB1 agonist with limited brain penetration

New Drug Could Help Maintain Long-Term Weight Loss (news – 2012)
http://www.sciencedaily.com/releases/2012/07/120726122116.htm

Peripherally restricted CB1 receptor blockers.
(abst – 2013)

JWH-015 – CB2 & GPR-55 agonist, mildly activates CB1 receptors

Effects of cannabinoid receptor agonists on neuronally-evoked contractions of urinary bladder tissues isolated from rat, mouse, pig, dog, monkey and human
(full - 2000)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571997/?tool=pmcentrez

Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease
(full - 2002)
http://bloodjournal.hematologylibrary.org/cgi/content/full/100/2/627?ijkey=eb71d6d7a06f311440761cfc6a7d081bce2771d

Species comparison and pharmacological characterization of rat and human CB2 cannabinoid receptors.
(abst - 2004)
CB2 cannabinoid receptors in trabecular meshwork cells mediate JWH015-induced enhancement of aqueous humor outflow facility. (full - 2005) http://www iovs.org/content/46/6/1988.long

Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation (link to PDF– 2005) http://www.springerlink.com/content/tq77102q4185073/fulltext.html

Potential role for CB2 selective ligands as immunosuppressive agents (full - 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1864948/?tool=pmcentrez

Opposing control of cannabinoid receptor stimulation on amyloid-beta-induced reactive gliosis: in vitro and in vivo evidence. (full - 2007) http://jpet.aspetjournals.org/content/322/3/1144.long

Spinal cannabinoid receptor type 2 activation reduces hypersensitivity and spinal cord glial activation after paw incision. (full - 2007) http://journals.lww.com/anesthesiology/Fulltext/2007/04000/Spinal_Cannabinoid_Receptor_Type_2_Activ ation.21.aspx

CB2 cannabinoid receptor agonist JWH-015 modulates human monocyte migration through defined intracellular signaling pathways. (full – 2008) http://ajpheart.physiology.org/content/294/3/H1145.long

Crosstalk between Chemokine Receptor CXCR4 and Cannabinoid Receptor CB(2) in Modulating Breast Cancer Growth and Invasion. (full – 2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168464/?tool=pubmed

Marijuana-based Drugs: Innovative Therapeutics or Designer Drugs of Abuse? (full – 2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139381/?tool=pubmed

Intrathecal Administration of the Cannabinoid 2 Receptor Agonist JWH015 Can Attenuate Cancer Pain and Decrease mRNA Expression of the 2B Subunit of N-Methyl-d-Aspartic Acid (full – 2011) http://journals.lww.com/anesthesia-analgesia/Fulltext/2011/08000/Intrathecal_Administration_of_the_Cannabinoid_2.33.aspx

Latest blood test detects 12 popular synthetic cannabinoids in "fake pot". (news – 2011) http://www.thefreelibrary.com/Latest+blood+test+detects+12+popular+synthetic+cannabinoids+in+%22fake...-a0261876557

The CB(2)-preferring agonist JWH015 also potently and efficaciously activates CB(1) in autaptic hippocampal neurons. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/22921769

Combined antiproliferative effects of the aminoalkylindole WIN55,212-2 and radiation in breast cancer cells. (full – 2013) http://jpet.aspetjournals.org/content/early/2013/11/20/jpet.113.205120.long

JWH-018 – CB1 agonist
Withdrawal Phenomena and Dependence Syndrome After the Consumption of "Spice Gold" (full - 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719097/?tool=pmcentrez

Spice drugs: cannabinoids as a new designer drugs. (abst - 2009)

Synthetic cannabis mimic found in herbal incense (news – 2009)

JWH018, a common constituent of 'Spice' herbal blends, is a potent and efficacious cannabinoid CB(1) receptor agonist. (full - 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931559/?tool=pubmed

Involvement of cannabinoid-1 and cannabinoid-2 receptors in septic ileus. (full – 2010)

Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds. (abst – 2010)

Chemical analysis of synthetic cannabinoids as designer drugs in herbal products. (abst – 2010)

Pharmacological properties and dependence liabilities of synthetic cannabinoids (abst – 2010)
http://www.unboundmedicine.com/medline/ebm/record/20681249/abstract/%5BPharmacological_properties_and_dependence_liabilities_of_synthetic_cannabinoids%5D

Screening for the synthetic cannabinoid JWH-018 and its major metabolites in human doping controls. (abst - 2010)

FAQ: K2, Spice Gold, and Herbal 'Incense' (news - 2010)

THIS ISN'T YOUR MOTHER'S SPICE (news - 2010)
http://www.mapinc.org/drugnews/v10/n497/a07.html?1173

College students and use of K2: an emerging drug of abuse in young persons (full – 2011)
http://www.substanceabusepolicy.com/content/6/1/16

Beyond THC: The New Generation of Cannabinoid Designer Drugs. (full – 2011)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187647/?tool=pubmed

Marijuana-based Drugs: Innovative Therapeutics or Designer Drugs of Abuse?
1-Pentyl-3-phenylacetylindoles and JWH-018 share in vivo cannabinoid profiles in mice. (full – 2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139381/?tool=pubmed

Latest blood test detects 12 popular synthetic cannabinoids in "fake pot". (news – 2011) [link]

'Fake Marijuana' May Trigger Heart Trouble in Teens (news – 2011) [link]

A Characterization of Synthetic Cannabinoid Exposures Reported to the National Poison Data System in 2010 (full – 2012) [link]

The role of CB2 receptor ligands in human eosinophil function (full – 2012) [link]

JWH-018 and JWH-073: Δ9-Tetrahydrocannabinol-Like Discriminative Stimulus Effects in Monkeys. (full – 2012) [link]

Adolescent Exposure of JWH-018 “Spice” Produces Subtle Effects on Learning and Memory Performance in Adulthood (full – 2012) [link]

Identification and structural characterization of the synthetic cannabinoid 3-(1-adamantoyl)-1-pentylindole as an additive in 'herbal incense'. (abst – 2012) [link]

Detection and disposition of JWH-018 and JWH-073 in mice after exposure to "Magic Gold" smoke. (abst – 2012) [link]

"Spice" and "k2" herbal highs: a case series and systematic review of the clinical effects and biopsychosocial implications of synthetic cannabinoid use in humans. (abst – 2012) [link]

Simultaneous analysis of several synthetic cannabinoids, THC, CBD and CBN, in hair by ultra-high performance liquid chromatography tandem mass spectrometry. Method validation and application to real samples. (abst – 2012) [link]

Detection and quantification of new designer drugs in human blood: part 1 - synthetic cannabinoids. (abst – 2012) [link]

A major glucuronidated metabolite of JWH-018 is a neutral antagonist at CB1 receptors. (abst – 2012) [link]

The spice in France: mixed herbs containing synthetic cannabinoids. (abst – 2012) [link]

Determination of naphthalen-1-yl-(1-pentyllindol-3-yl)methanone (JWH-018) in mouse blood and tissue after inhalation exposure to ‘buzz’ smoke by HPLC/MS/MS (abst – 2012) http://onlinelibrary.wiley.com/doi/10.1002/bmc.2710/abstract

Synthetic marijuana was created strictly for research at Clemson (news – 2012) http://www.timesnews.net/article/9042095/synthetic-marijuana-was-created-strictly-for-research-at-clemson

DIFFERENTIAL DRUG-DRUG INTERACTIONS OF THE SYNTHETIC CANNABINOIDS JWH-018 AND JWH-073: IMPLICATIONS FOR DRUG ABUSE LIABILITY AND PAIN THERAPY. (full - 2013) http://jpet.aspetjournals.org/content/early/2013/06/25/jpet.113.206003.long

The Directive 2010/63/EU on animal experimentation may skew the conclusions of pharmacological and behavioural studies. (full – 2013)

Synthetic cannabis (article – 2013) http://tidsskriftet.no/article/2896636/en_GB

Screening for synthetic cannabinoids in hair by using LC-QTOF MS: A new and powerful approach to study the penetration of these new psychoactive substances in the population. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23842479

Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB1. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23494106

Tolerance and cross-tolerance among high-efficacy synthetic cannabinoids JWH-018 and JWH-073 and low-efficacy phytocannabinoid Δ9-THC (abst – 2013)
The omega and omega-1 monohydroxyl metabolites of the abused K2/Spice synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as agonists at human cannabinoid 2 receptors (hCB2s) (abst – 2013)

Conditioned taste aversion elicited by synthetic cannabinoid JWH-018 in mice is attenuated by pretreatment with phytocannabinoid {Delta}9-THC (abst – 2013)

Smart drugs: green shuttle or real drug? (abst – 2013)

Prevalence of synthetic cannabinoids in blood samples from Norwegian drivers suspected of impaired driving during a seven weeks period. (abst – 2013)
Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. (abst – 2013)

Ischemic stroke after use of the synthetic marijuana "spice" (abst – 2013)

Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death. (abst – 2013)

Sulfaphenazole and α-Naphthoflavone Attenuate the Metabolism of the Synthetic Cannabinoids JWH-018 and AM2201 Found in K2/Spice. (abst – 2013)

Characteristics of the designer drug and synthetic cannabinoid receptor agonist AM-2201 regarding its chemistry and metabolism (abst – 2013)

Cannabinoids Found to Reduce 90% of Skin Cancer in Just 20 Weeks, According to New Study (news – 2013)

LC-QTOF-MS as a superior strategy to immunoassay for the comprehensive analysis of synthetic cannabinoids in urine. (abst – 2014)

Driving under the influence of synthetic cannabinoids ("Spice"): a case series. (abst – 2014)

Analysis of new classes of recreational drugs in sewage: Synthetic cannabinoids and amphetamine-like substances. (abst – 2014)

JWH-019 – CB1 & CB2 agonist

Hair analysis as a tool to evaluate the prevalence of synthetic cannabinoids in different populations of drug consumers. (abst – 2013)

JWH-073 - CB1 & CB2 agonist

Spice drugs: cannabinoids as a new designer drugs. (abst - 2009) http://www.unboundmedicine.com/medline/ebm/record/19718488/abstract/%5BSpice_drugs:_cannabinoids_as_a_new_designer_drugs_%5D

College students and use of K2: an emerging drug of abuse in young persons (full – 2011) http://www.substanceabusepolicy.com/content/6/1/16

Marijuana-based Drugs: Innovative Therapeutics or Designer Drugs of Abuse? (full – 2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139381/?tool=pubmed

Cardiotoxicity associated with the synthetic cannabinoid, K9, with laboratory confirmation. (abst – 2011) [http://www.ncbi.nlm.nih.gov/pubmed/21802885]

CP47,497-C8 and JWH073, commonly found in 'Spice' herbal blends, are potent and efficacious CB(1) cannabinoid receptor agonists. (abst – 2011) [http://www.ncbi.nlm.nih.gov/pubmed/2133643]

Latest blood test detects 12 popular synthetic cannabinoids in "fake pot". (news – 2011) [http://www.thefreelibrary.com/Latest+blood+test+detects+12+popular+synthetic+cannabinoids+in+%22fake...-a0261876557]

Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/22266354

Synthetic marijuana was created strictly for research at Clemson (news – 2012) http://www.timesnews.net/article/9042095/synthetic-marijuana-was-created-strictly-for-research-at-clemson

Differential Drug-Drug Interactions of the Synthetic Cannabinoids JWH-018 and JWH-073: Implications for Drug Abuse Liability and Pain Therapy. (full - 2013) http://jpet.aspetjournals.org/content/early/2013/06/25/jpet.113.206003.long

Screening for synthetic cannabinoids in hair by using LC-QTOF MS: A new and powerful approach to study the penetration of these new psychoactive substances in the population. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23842479

Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB1. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23494106

Tolerance and cross-tolerance among high-efficacy synthetic cannabinoids JWH-018 and JWH-073 and low-efficacy phytocannabinoid Δ9-THC (abst – 2013) http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/1097.1?sid=eea722c0-971c-4daa-8b8c-38c0c63c19ad

The omega and omega-1 monohydroxyl metabolites of the abused K2/Spice synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as agonists at human cannabinoid 2 receptors (hCB2s) (abst – 2013) http://www.fasebj.org/cgi/content/meeting_abstract/26/1_MeetingAbstracts/660.8?sid=eea722c0-971c-4daa-8b8c-38c0c63c19ad

JWH-81 - CB1 agonist

CB1 Receptor-Mediated Signaling Underlies the Hippocampal Synaptic, Learning and Memory Deficits Following Treatment with JWH-081, a New Component of Spice/K2 Preparations. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/24123667

JWH-100 / AM-678 - CB1 agonist

College students and use of K2: an emerging drug of abuse in young persons (full – 2011) http://www.substanceabusepolicy.com/content/6/1/16

JWH-122 – CB1 agonist

Analysis of 30 synthetic cannabinoids in serum by liquid chromatography-electrospray ionization tandem mass spectrometry after liquid-liquid extraction (abst – 2012)

Acute toxicity due to the confirmed consumption of synthetic cannabinoids: Clinical and laboratory findings. (abst – 2012)

“Spiceophrenia”: a systematic overview of “Spice”-related psychopathological issues and a case report (full – 2013)

Qualitative Confirmation of 9 Synthetic Cannabinoids and 20 Metabolites in Human Urine Using LC-MS/MS and Library Search. (abst – 2013)

Screening for synthetic cannabinoids in hair by using LC-QTOF MS: A new and powerful approach to study the penetration of these new psychoactive substances in the population. (abst – 2013)

Analysis of new classes of recreational drugs in sewage: Synthetic cannabinoids and amphetamine-like substances. (abst – 2013)

Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB1. (abst – 2013)

Driving under the influence of synthetic cannabinoids ("Spice"): a case series. (abst – 2013)

Acute Psychosis Associated with Recreational Use of Benzofuran 6-(2-Aminopropyl)Benzofuran (6-APB) and Cannabis. (abst – 2013)
http://www.ncbi.nlm.nih.gov/pubmed/23733714

Structure-dependent inhibitory effects of synthetic cannabinoids against 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and skin tumour promotion in mice (abst – 2013)

Smart drugs: green shuttle or real drug? (abst – 2013)

A Case of Cannabinoid Hyperemesis Syndrome Caused by Synthetic Cannabinoids. (abst – 2013)

Blood Synthetic Cannabinoid Concentrations in Cases of Suspected Impaired Driving (abst – 2013)

Prevalence of synthetic cannabinoids in blood samples from Norwegian drivers suspected of impaired driving during a seven weeks period. (abst – 2013)

JWH-133/ 3-(1 1 -dimethylbutyl)- 1-deoxy- 8-THC - CB2 agonist

Inhibition of tumor angiogenesis by cannabinoids (full - 2003) http://www.fasebj.org/cgi/reprint/02-0795jfev1?maxtoshow=&hits=10&RESULTFORMAT=&fulltext=cannabis&andorexactfulltext=and&searchid=1&FIRSTINDEX=20&sortspec=relevance&resourcetype=HWCIT

Inhibition of guinea-pig and human sensory nerve activity and the cough reflex in guinea-pigs by cannabinoid (CB2) receptor activation. (full - 2003) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574031/?tool=pubmed

Effects of cannabinoid receptor-2 activation on accelerated gastrointestinal transit in lipopolysaccharide-treated rats (full - 2004) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1575196/?tool=pmcentrez

Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation (full - 2006) http://www.fasebj.org/cgi/content/full/20/13/2405?maxtoshow=&hits=10&RESULTFORMAT=&fulltext=cannabis&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&resourcetype=HWCIT
Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. (full – 2006) http://ajpgi.physiology.org/content/291/2/G364.long

Cannabinoid-2 receptor mediates protection against hepatic ischemia/reperfusion injury (full - 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228252/?tool=pmcentrez

Cannabinoids Induce Glioma Stem-like Cell Differentiation and Inhibit Gliomagenesis (full - 2007) http://www.jbc.org/content/282/9/6854.long

Attenuation of Experimental Autoimmune Hepatitis by Exogenous and Endogenous Cannabinoids: Involvement of Regulatory T Cells (full - 2008) http://molpharm.aspetjournals.org/content/74/1/20.full?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=320&resourcetype=HWCIT#content-block

Regression of Fibrosis after Chronic Stimulation of Cannabinoid CB2 Receptor in Cirrhotic Rats (full - 2008) http://jpet.aspetjournals.org/content/324/2/475.full?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=320&resourcetype=HWCIT#content-block

Cannabinoid 2 receptor induction by IL-12 and its potential as a therapeutic target for the treatment of anaplastic thyroid carcinoma. (full - 2008) http://www.nature.com/cgt/journal/v15/n2/full/7701101a.html

Cannabinoid receptor agonists inhibit growth and metastasis of breast cancer (abst - 2008)
Involvement of central cannabinoid CB2 receptor in reducing mechanical allodynia in a mouse model of neuropathic pain (abst – 2008)

Cannabinoid CB2 Receptor Potentiates Obesity-Associated Inflammation, Insulin Resistance and Hepatic Steatosis (full - 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688760/?tool=pubmed

Cannabinoids as novel anti-inflammatory drugs. (full - 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828614/?tool=pubmed

Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer (full - 2009) http://mct.aacrjournals.org/content/8/11/3117.full

Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition (full - 2010) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917429/?tool=pmcentrez

Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. (full – 2010) http://www.fasebj.org/content/24/3/788.long

Antitumorigenic Effects of Cannabinoids beyond Apoptosis (full - 2010)
http://jpet.aspetjournals.org/content/332/2/336.full?sid=af53ea87-ab4b-426e-9c7e-8f750e9c4a17

Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimers' disease (full – 2011)
http://molpharm.aspetjournals.org/content/early/2011/02/24/mol.111.071290.long

Is lipid signaling through cannabinoid 2 receptors part of a protective system? (full – 2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062638/
The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques (full – 2011) http://eurheartj.oxfordjournals.org/content/33/7/846.full

Brain cannabinoid CB2 receptors modulate cocaine's actions in mice (full – 2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164946/

Antinociceptive effects induced through the stimulation of spinal cannabinoid type 2 receptors in chronically inflamed mice (abst - 2011) http://www.unboundmedicine.com/medline/ebm/record/21771590/abstract/Antinociceptive_effects_induced_through_the_stimulation_of_spinal_cannabinoid_type_2_receptors_in_chronically_inflamed_mice

Prolonged oral Cannabinoid Administration prevents Neuroinflammation, lowers beta-amyloid Levels and improves Cognitive Performance in Tg APP 2576 Mice. (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292807/

The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation (full – 2012) http://www.jneuroinflammation.com/content/9/1/79

Cannabinoid receptor CB2 protects against balloon-induced neointima formation. (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774259/

Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/22020035

Treatment with CB 2 Agonist JWH-133 Reduces Histological Features Associated with Erectile Dysfunction in Hypercholesterolemic Mice. (full – 2013) http://www.hindawi.com/journals/cdi/2013/263846/

Cannabinoid CB2 Receptors Regulate Central Sensitization and Pain Responses Associated with Osteoarthritis of the Knee Joint. (full – 2013) http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0080440

The cannabinoid CB2 receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain (full – 2013) http://www.europeanneuropsychopharmacology.com/article/S0924-977X%2813%2900302-7/fulltext

Activation of Cannabinoid Type 2 Receptor by JWH133 Protects Heart Against Ischemia/Reperfusion-Induced Apoptosis. (abst – 2013)

Increase of mesenchymal stem cell migration by Cannabidiol via activation of p42/44 MAPK. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/24304686

JWH – 150 - CB2 agonist

Cannabinoid Receptor 2-Mediated Attenuation of CXCR4-Tropic HIV Infection in Primary CD4+ T Cells (full – 2012)
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0033961

JWH-200 - CB1 agonist

Synthetic Cannabinoids - The Challenges of Testing for Designer Drugs (article – 2013) (funky link- delete the “sign in”, and it comes up)

JWH-210 – CB1 agonist

Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB1. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23494106

Identification and Structural Elucidation of Four Cannabimimetic Compounds (RCS-4, AM-2201, JWH-203 and JWH-210) in Seized Products (abst – 2013)

JWH-250 – CB 1 agonist

Screening for synthetic cannabinoids in hair by using LC-QTOF MS: A new and powerful approach to study the penetration of these new psychoactive substances in the population. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23842479

Qualitative Confirmation of 9 Synthetic Cannabinoids and 20 Metabolites in Human Urine Using LC-MS/MS and Library Search. (abst – 2013)

Smart drugs: green shuttle or real drug? (abst – 2013)

Blood Synthetic Cannabinoid Concentrations in Cases of Suspected Impaired Driving (abst – 2013)

Hair analysis as a tool to evaluate the prevalence of synthetic cannabinoids in different populations of drug consumers. (abst – 2013)

Prevalence of synthetic cannabinoids in blood samples from Norwegian drivers suspected of impaired driving during a seven weeks period. (abst – 2013)

LC-QTOF-MS as a superior strategy to immunoassay for the comprehensive analysis of synthetic cannabinoids in urine. (abst – 2014)

JZL-184 – blocks the breakdown of 2-AG

Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects (full – 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605181/

Blockade of 2-arachidonoylglycerol hydrolysis by selective monoacylglycerol lipase inhibitor 4-nitrophenyl 4-((dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) Enhances retrograde endocannabinoid signaling. (full – 2009)
http://jpet.aspetjournals.org/content/331/2/591.long

Inhibition of COX-2 expression by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-γ (full – 2011)

Inhibition of monoacylglycerol lipase (MAGL) attenuates NSAID-induced gastric hemorrhages in mice. (full – 2011)
http://jpet.aspetjournals.org/content/early/2011/06/09/jpet.110.175778.long
Spinal administration of the monoacylglycerol lipase inhibitor JZL184 produces robust inhibitory effects on nociceptive processing and the development of central sensitization in the rat

Monoacylglycerol lipase is a new therapeutic target for Alzheimer’s disease
(full – 2012)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513645/

Monoacylglycerol Lipase (MAGL) Inhibition Attenuates Acute Lung Injury in Mice.
(full – 2013)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808422/

The monoacylglycerol lipase inhibitor JZL184 suppresses inflammatory pain in the mouse carrageenan model.
(http – 2013)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717616/

Repeated Low Dose Administration of the Monoacylglycerol Lipase Inhibitor JZL184 Retains CB1 Receptor Mediated Antinociceptive and Gastroprotective Effects.
(abst – 2013)

Peripheral and Spinal Activation of Cannabinoid Receptors by Joint Mobilization Alleviates Postoperative Pain in Mice.
(abst – 2013)

The endocannabinoid system mediates aerobic exercise-induced antinociception in rats.
(abst – 2013)

Dual inhibition of endocannabinoid catabolic enzymes produces enhanced antinociceptive effects in morphine-dependent mice.
(abst – 2013)

Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine inflammatory pain model.
(abst – 2013)

Study: Cannabinoids Offer Treatment For Severe Lung Disease
(news – 2013)

Monoacylglycerol Lipase Inhibition Blocks Chronic Stress-Induced Depressive-Like Behaviors via Activation of mTOR Signaling.
(abst – 2014)

JZL-195 - stops the breakdown of anandamide and 2-AG

KM-233 – CB2 agonist

KML-29 - stops the production of MAGL, thus preventing the breakdown of 2-AG

KN38-7271/ BAY38-7271 – CB1 & CB2 agonist

Characterization of the diarylether sulfonylester (-(R)-3-(2-hydroxymethylindanyl-4-oxy)phenyl-4,4,4-trifluoro-1-sulfonate (BAY 38-7271) as a potent cannabinoid receptor agonist with neuroprotective properties. (full – 2002) http://jpet.aspetjournals.org/content/302/1/359.long

Breakthrough in treatment of Traumatic Brain Injury: KeyNeurotek’s clinical study reaches primary endpoint and shows significant increase in survival (news - 2009)

Early Survival of Comatose Patients after Severe Traumatic Brain Injury with the Dual Cannabinoid CB1/CB2 Receptor Agonist KN38-7271: A Randomized, Double-Blind, Placebo-Controlled Phase II Trial. (abst – 2012)

Cannabinoid Receptor Subtypes 1 and 2 Mediate Long-Lasting Neuroprotection and Improve Motor Behaviour Deficits After Transient Focal Cerebral Ischemia. (abst – 2012)

LBP-1 - CB1 agonist

Low brain penetrant CB1 receptor agonists for the treatment of neuropathic pain. (abst - 2012)

MAM-2201 - CB1 & CB2 agonist, a hybrid of JWH-122 and AM-2201

Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death. (abst – 2013)

Identification and quantification of synthetic cannabinoids in 'spice-like' herbal mixtures: A snapshot of the German situation in the autumn of 2012. (full – 2014)

LC-QTOF-MS as a superior strategy to immunoassay for the comprehensive analysis of synthetic cannabinoids in urine. (abst – 2014)

Driving under the influence of synthetic cannabinoids ("Spice"): a case series. (abst – 2014)
Cannabinoids (encyclopedia entry) http://www.chemie.de/lexikon/e/Cannabinoids/

Chronic Migraine Headache: five cases successfully treated with Marinol and/or illicit cannabis. (abst - 1991) http://www.druglibrary.org/schaffer/hemp/migrn1.htm

Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review (full - 2001) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC34325/?tool=pmcentrez
Chapter 3: Cannabis and Marinol Compared (book excerpt - 2001)
http://www.or-coast.net/contigo/PDF%201%20Files/chpt_3.pdf

The Role of Cannabis and Cannabinoids in Pain Management (full – 2002)
http://www.humanhemphealth.ca/Russo-AAPM_chapter.pdf

Preliminary observation with dronabinol in patients with intractable pruritus secondary to cholestatic liver disease. (abst - 2002)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=116

Cannabinoid rotation in a young woman with chronic cystitis (abst - 2003)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=115

http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=61

On the application of cannabis in paediatrics and epileptology. (abst - 2003)

http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=92

Therapeutic potential of cannabinoids in CNS disease. (abst - 2003)

Marinol Death Sentence: Oregon Man Denied Liver Transplant Because of Prescription - He’s Not the Only One (news – 2003)
http://stopthedrugwar.org/chronicle-old/299/notransplant.shtml

MARINOL® (Dronabinol) Capsules (monograph - 2004)
http://www.fda.gov/ohrms/dockets/dockets/05n0479/05N-0479-emc0004-04.pdf

Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial (full - 2004)
http://www.bmj.com/cgi/content/full/329/7460/253

A Novel Intervention for the Treatment of Gout in an Elderly Rehabilitation Patient in Whom Conventional Treatment was Ineffective (full – 2004)
http://www.medicine.virginia.edu/clinical/departments/physical-medicine-rehabilitation/Gout-page

http://medicalmarijuana.procon.org/sourcefiles/marinol.pdf

Marinol vs Natural Cannabis (full - 2005)

Dronabinol can't replace medical marijuana (article - 2005)

Testimony of Terry Jacobs to FDA - why he prefers for medical marijuana to Marinol (testimony - 2005)

Cannabinoids In Medicine: A Review Of Their Therapeutic Potential (full – 2006)

Cannabis Chemicals May Alleviate Post-Eating Stomach Cramps (news – 2006)

Big Pharma's Strange Holy Grail: Cannabis Without Euphoria? (news - 2006)
http://www.mapinc.org/drugnews/v06.n899.a05.html

ACG: Cannabinoid Activator Mellows Out Colon (news - 2006)
http://www.medpagetoday.com/MeetingCoverage/ACG/4410

Cannabinoids as therapeutic agents in cardiovascular disease: a tale of passions and illusions. (full - 2007)

Effects of a cannabinoid receptor agonist on colonic motor and sensory functions in humans: a randomized, placebo-controlled study (full - 2007)
http://ajpgi.physiology.org/cgi/content/full/293/1/G137

Cannabinoids in the management of difficult to treat pain (full - 2008) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2503660/?tool=pmcentrez

Medical use of cannabinoids does not cause an increase in serious adverse health effects (news - 2008) http://www.cannabis-med.org/english/bulletin/ww_en_db_cannabis_artikel.php?id=272

Emerging strategies for exploiting cannabinoid receptor agonists as medicines.
(full – 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697681/

THC can improve symptoms of schizophrenia
(article– 2009)

Cluster attacks responsive to recreational cannabis and dronabinol.
(abst - 2009)

Effects of \{Delta\}9-tetrahydrocannabinol on reward and anxiety in rats exposed to chronic unpredictable stress
(abst - 2009)
http://www.unboundmedicine.com/medline/ebm/record/19406854/abstract/Effects_of_%7BDelta%7D9_tetrahydrocannabinol_on_reward_and_anxiety_in_rats_exposed_to_chronic_unpredictable_stress

Synthetic delta-9-tetrahydrocannabinol (dronabinol) can improve the symptoms of schizophrenia.
(abst - 2009)
http://www.unboundmedicine.com/medline/ebm/record/19440079/abstract/

Neurobiology and Systems Physiology of the Endocannabinoid System
(abst – 2009)

Does the Pot Pill Work?
(news - 2009)

The FDA has written documentation that patients can overdose on Marinol and that it can be lethal
(news - 2009)

Use of dronabinol (delta-9-THC) in autism: A prospective single-case-study with an early infantile autistic child
(full – 2010)

Delta9-tetrahydrocannabinvarin testing may not have the sensitivity to detect marijuana use among individuals ingesting dronabinol.
(full - 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815025/?tool=pubmed

Dramatic improvement of refractory Isaacs’ syndrome after treatment with dronabinol.
(1st page – 2010)

(abst – 2010)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=313

Efficacy and tolerability of high-dose dronabinol maintenance in HIV-positive marijuana smokers: a controlled laboratory study.
(abst – 2010)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=316
Dronabinol for the treatment of unspecific pain, restlessness and spasticity in neuropaediatrics (abst – 2010)

Science: Dramatic improvement of neuromyotonia (Isaacs' syndrome) with THC in a case report (news – 2010)

Nature's (Legal) Cannabinoids (news - 2010)
http://www.mapinc.org/drugnews/v10/n126/a04.html?1194

Oral THC Reduces Aggressive Behavior In Patients With Refractory Psychosis, Study Says (news - 2010)
http://www.norml.org/index.cfm?Group_ID=8419

Dronabinol for the treatment of cannabis dependence: a randomized, double-blind, placebo-controlled trial. (full – 2011)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154755/

Dronabinol, a cannabinoid agonist, reduces hair pulling in trichotillomania: a pilot study. (abst – 2011)
http://www.unboundmedicine.com/medline/ebm/record/21590520/abstract/Dronabinol_a_cannabinoid_agonist_reduces_hair_pulling_in_trichotillomania:_a_pilot_study

Cannabinoids in children (abst – 2011)

Pharmacogenetic Trial of a Cannabinoid Agonist Shows Reduced Fasting Colonic Motility in Patients with Non-Constipated Irritable Bowel Syndrome. (abst – 2011)

Drunk versus drugged: How different are the drivers? (abst – 2011)

What Are Prescription Drugs That Are a Substitute for Marijuana? (news – 2011)
http://www.livestrong.com/article/137065-what-are-prescription-drugs-that-are-substitute-marijuana/#ixzz21Ia1dVQG

Science: THC effective in trichotillomania symptoms in a pilot study (news – 2011)

Is Pot Good For You? (news – 2011)
http://www.time.com/time/magazine/article/0,9171,1003570,00.html

Endocannabinoids in nervous system health and disease: the big picture in a nutshell
The Therapeutic Potential of Cannabis and Cannabinoids (full – 2012)
http://rstb.royalsocietypublishing.org/content/367/1607/3193.full

Irritable Bowel Syndrome: Methods, Mechanisms, and Pathophysiology. Genetic epidemiology and pharmacogenetics in irritable bowel syndrome (full – 2012)
http://ajpgi.physiology.org/content/302/10/G1075

DRONABINOL capsule [Watson Laboratories, Inc.] (monograph - 2012)

Randomized pharmacodynamic and pharmacogenetic trial of dronabinol effects on colon transit in irritable bowel syndrome-diarrhea. (abst – 2012)

Heat Exposure of Cannabis sativa Extracts Affects the Pharmacokinetic and Metabolic Profile in Healthy Male Subjects. (abst – 2012)

Can oral fluid cannabinoid testing monitor medication compliance and/or cannabis smoking during oral THC and oromucosal Sativex administration? (abst – 2012)

Side Effects of the Marinol Pill (news – 2012)
http://www.livestrong.com/article/90879-side-effects-marinol-pill/

Can medical marijuana help rheumatoid arthritis? (news – 2012)
Can cannabinoid drug used for nausea in chemotherapy relieve sleep apnea? (news – 2012)

Proof of concept trial of dronabinol in obstructive sleep apnea. (full – 2013)

Suspected Dronabinol Withdrawal in an Elderly Cannabis-Naive Medically Ill Patient (letter – 2013)

Medicinal Cannabis and Painful Sensory Neuropathy (editorial – 2013)
http://virtualmentor.ama-assn.org/2013/05/oped1-1305.html

The pharmacologic and clinical effects of medical cannabis. (abst – 2013)

Simultaneous and sensitive LC–MS/MS determination of tetrahydrocannabinol and metabolites in human plasma (abst – 2013)
http://link.springer.com/article/10.1007/s00216-012-6501-x

Comparison of the Analgesic Effects of Dronabinol and Smoked Marijuana In Daily Marijuana Smokers. (abst – 2013)

The medical use of cannabis for reducing morbidity and mortality in patients with HIV/AIDS. (abst – 2013)

Towards a better Cannabis drug. (abst – 2013)

Dronabinol Treatment of Refractory Nausea and Vomiting Related to Peritoneal Carcinomatosis. (abst – 2013)

Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans. (abst – 2013)

Plasma Cannabinoid Concentrations During Dronabinol Pharmacotherapy for Cannabis Dependence. (abst – 2013)

Intranodose ganglion injections of dronabinol attenuate serotonin-induced apnea in Sprague-Dawley rat. (abst – 2013)

The Subjective Psychoactive Effects of Oral Dronabinol Studied in a Randomized, Controlled Crossover Clinical Trial For Pain. (abst – 2013)

Medical Marijuana: Consortium of Multiple Sclerosis Centers (news – 2013)
Maine Mom Fights Son’s Autistic Episodes With Marinol (news – 2013)

Pharmaceutical Cannabis Produces Similar High, Study Finds (news – 2013)
http://www.leafscience.com/2013/12/04/pharmaceutical-cannabis-produces-similar-high-study-finds/

Science/Human: THC reduces sleep apnoea in small clinical study (news – 2013)

Cannabis pill better than smoking for pain (news – 2013)

Dronabinol in severe, enduring anorexia nervosa: A randomized controlled trial (abst – 2014)

Marijuana In A Pill? Why Patients Might Be Better Off Smoking It (news – 2014)
http://www.leafscience.com/2014/01/19/marijuana-pill-patients-might-better-smoking/

MDA-7 – strong CB2 agonist

MDA7: a novel selective agonist for CB2 receptors that prevents allodynia in rat neuropathic pain models. (full – 2008)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597252/

Prevention of Paclitaxel-Induced Neuropathy Through Activation of the Central Cannabinoid Type 2 Receptor System (full – 2012)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334436/

Cannabinoid Receptor Stimulator Reverses Symptoms of Alzheimer's Disease in Animal Model (news – 2012)
http://www.biotechdaily.com/?option=com_article&Itemid=294742494

Researchers investigating potential drug for treatment of Alzheimer's disease (news – 2012)

Activation of the CB(2) receptor system reverses amyloid-induced memory deficiency. (abst – 2013)

In vivo efficacy of enabling formulations based on hydroxypropyl-β-cyclodextrins, micellar preparation, and liposomes for the lipophilic cannabinoid CB2 agonist, MDA7. (abst – 2013)
Spinal gene expression profiling and pathways analysis of a CB2 agonist (MDA7)-targeted prevention of paclitaxel-induced neuropathy. (abst – 2013) [link]

MDA-19 – strong CB2 agonist

Design and synthesis of a novel series of N-alkyl isatin acylhydrazone derivatives that act as selective cannabinoid receptor 2 agonists for the treatment of neuropathic pain. (abst – 2008) [link]

Pharmacological characterization of a novel cannabinoid ligand, MDA19, for treatment of neuropathic pain. (full – 2010) [link]

Studies demonstrate analgesic properties of synthetic cannabinoid (news – 2010) [link]

MK-0364 – see TARANABANT

MT-178 - CB2 agonist

Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. (abst – 2013) [link]

NABILONE/ CESAMET - a synthetic THC, CB1 & CB2 agonist

Delta(9)-tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid CB(1) receptor antagonist/inverse agonist SR 141716A. (full – 2001) [link]

Cannabinoids reduce levodopa-induced dyskinesia in Parkinson's disease: a pilot study. (abst - 2001) [link]

Antiinflammatory action of endocannabinoid palmitoylethanolamide and the synthetic cannabinoid nabilone in a model of acute inflammation in the rat (full - 2002) [link]
Cannabinoids and multiple sclerosis. (abst - 2002)

Cannabinoid rotation in a young woman with chronic cystitis (abst - 2003)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=115

Therapeutic potential of cannabinoids in CNS disease. (abst - 2003)

Nabilone Could Treat Chorea and Irritability in Huntington’s Disease (letter - 2006)

Nabilone significantly reduces spasticity-related pain (abst - 2006)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=200

The synthetic cannabinoid nabilone improves pain and symptom management in cancer patients (abst - 2006)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=177

Low dose treatment with the synthetic cannabinoid Nabilone significantly reduces spasticity-related pain: A double-blind placebo-controlled cross-over trial. (abst - 2006)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=200

Synthetic cannabinomimetic nabilone on patients with chronic pain (abst - 2006)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=197

The synthetic cannabinoid nabilone improves pain and symptom management in cancer patients (abst - 2006)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=177

Low dose treatment with the synthetic cannabinoid Nabilone significantly reduces spasticity-related pain: A double-blind placebo-controlled cross-over trial. (abst - 2006)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=200

The synthetic cannabinoid nabilone improves pain and symptom management in cancer patients (abst - 2006)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=177

Nabilone improves pain and symptom management in cancer patients (abst - 2006)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=177

Synthetic cannabinomimetic nabilone on patients with chronic pain (abst - 2006)
http://www.cannabis-med.org/studies/ww_en_db_study_show.php?s_id=197

A Look At FDA-OK'd 'Marijuana' Drug (news – 2006)
http://www.cbsnews.com/stories/2006/05/18/health/webmd/main1632561.shtml

2nd synthetic marijuana drug OK'd for chemo effects (news – 2006)
Cesamet, THC and chemotherapy (news – 2006)

Cannabinoids as therapeutic agents in cardiovascular disease: a tale of passions and illusions. (full - 2007)

Cesamet (nabilone) capsule (info page - 2007)

Synthetic Cannabis for Fibromyalgia Pain? (news - 2007)
http://www.healthcentral.com/chronic-pain/c/5949/16104/fm-pain

Nabilone relieves many advanced Ca symptoms (news - 2007)
http://www.highbeam.com/doc/1G1-178441488.html

Cannabinoids in the management of difficult to treat pain (full - 2008)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2503660/?tool=pmcentrez

Science: Nabilone effective in the treatment of night sweats of four patients with advanced cancer (news – 2008)

Marijuana Derivative Called Effective in Fibromyalgia (news - 2008)
http://www.medpagetoday.com/Rheumatology/Fibromyalgia/8377

Cannabinoid may be useful for pain management in fibromyalgia (news – 2008)

Marijuana-Based Drug Reduces Fibromyalgia Pain, Study Suggests (news - 2008)
http://www.sciencedaily.com/releases/2008/02/080217214547.htm

Two New Approaches for Fibromyalgia (news – 2008)
Cannabinoids, Endocannabinoids, and Related Analogs in Inflammation
(full - 2009) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664885/?tool=pmcentrez

Emerging strategies for exploiting cannabinoid receptor agonists as medicines.
(full – 2009) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697681/

Cannabinoids as pharmacotherapies for neuropathic pain: from the bench to the bedside.
(full – 2009) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755639/

A pilot study using nabilone for symptomatic treatment in Huntington's disease.

The Effects of Nabilone on Sleep in Fibromyalgia: Results of a Randomized Controlled Trial. (full - 2010) http://journals.lww.com/anesthesia-analgesia/Fulltext/2010/02000/The_Effects_of_Nabilone_on_Sleep_in_Fibromyalgia_.56.aspx

What Are Prescription Drugs That Are a Substitute for Marijuana? (news – 2011) http://www.livestrong.com/article/137065-what-are-prescription-drugs-that-are-substitute-marijuana/#ixzz21Ia1dVQG

The Therapeutic Potential of Cannabis and Cannabinoids (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442177/

A Randomized, Double-Blind, Placebo Controlled, Parallel Assignment, Flexible Dose, Efficacy Study of Nabilone as Adjuvant in the Treatment of Diabetic Peripheral Neuropathic Pain Using an Enriched Enrollment Randomized Withdrawal Design (S38.003) (abst – 2012) http://www.neurology.org/cgi/content/meeting_abstract/78/1_MeetingAbstracts/S38.003?maxtoshow=&hits=25&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=180&sortspec=date&resourcetype=HWCIT

An enriched-enrolment, randomized withdrawal, flexible-dose, double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in the treatment of
diabetic peripheral neuropathic pain. (abst – 2012)

Study: Synthetic THC Analogue Mitigates Diabetic Neuropathy, Is ‘Well Tolerated’ In Patients (news – 2012)

New drug offers novel pain management therapy for diabetics. (news - 2012)
http://www.thefreelibrary.com/New+drug+offers+novel+pain+management+therapy+for+diabetics.-a0306899453

Synthetic cannabinoid could treat pain in diabetes patients (news – 2012)

Drug offers new pain management therapy for diabetics (news – 2012)

Can medical marijuana help rheumatoid arthritis? (news – 2012)

Combined antiproliferative effects of the aminoalkylindole WIN55,212-2 and radiation in breast cancer cells. (full – 2013)
http://jpet.aspetjournals.org/content/early/2013/11/20/jpet.113.205120.long

The pharmacologic and clinical effects of medical cannabis. (abst – 2013)

The use of cannabinoids in chronic pain. (abst – 2013)

The Fibromyalgia Drugs Your Doctor (Probably) Knows Nothing About (news – 2013)
http://www.prohealth.com/library/showArticle.cfm?libid=18225&site=articles

Marijuana In A Pill? Why Patients Might Be Better Off Smoking It (news – 2014)
http://www.leafscience.com/2014/01/19/marijuana-pill-patients-might-better-smoking/

NMP-181 – CB 2 agonist

Analgesic effect of a mixed T-type channel inhibitor/CB2 receptor agonist (full – 2013)
http://www.molecularpain.com/content/9/1/32
O-1602 – cannabidiol analog, GPR-18 & GPR-55 agonist

International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2 (full – 2010)
http://pharmrev.aspetjournals.org/content/62/4/588.full.pdf+html

A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. (full – 2011) http://joe.endocrinology-journals.org/content/211/2/177.long

siRNA knockdown of GPR18 receptors in BV-2 microglia attenuates N-arachidonoyl glycine-induced cell migration (full – 2012) http://www.jmolecularsignaling.com/content/7/1/10

O-1602, an atypical cannabinoid, inhibits tumor growth in colitis-associated colon cancer through multiple mechanisms (abst – 2012)
http://link.springer.com/article/10.1007%2Fs00109-012-0957-1

Role of endogenous cannabinoid system in the gut. (full - 2013)

A role for O-1602 and G protein-coupled receptor GPR55 in the control of colonic motility in mice. (full – 2013)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677091/

Regulation of cell proliferation by GPR55/cannabinoid receptors using (R,R')-4'-methoxy-1-naphthylfenoterol in rat C6 glioma cell line (abst – 2013)
http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=695437a2-7613-4bef-8697-2294df2da859&cKey=18baf6eb0-2c5f-4004-a56f-2d1f450e2ed1&mKey=9b2d28e7-24a0-466f-a3e9-07c21f6e9bc9

(R,R')-4'-methoxy-1-naphthylfenoterol Inhibits GPR55 signaling and the modulation of motility in human cancer cells (abst – 2013)
http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=25370896-7d13-4f15-be76-f664d79b577d&cKey=87b7fee1-45cc-42b7-aca7-48c6b1d42773&mKey=9b2d28e7-24a0-466f-a3e9-07c21f6e9bc9

Evaluation of the insulin releasing and antihyperglycaemic activities of GPR55 lipid agonists using clonal beta-cells, isolated pancreatic islets and mice. (abst – 2013)

Cannabinoid Effects on β Amyloid Fibril and Aggregate Formation, Neuronal and Microglial-Activated Neurotoxicity In Vitro (abst – 2013)

Anticancer activity of anandamide in human cutaneous melanoma cells. (abst – 2013)

Increase of mesenchymal stem cell migration by Cannabidiol via activation of p42/44 MAPK. (abst – 2013)

(R,R')-4'-Methoxy-1-naphthylfenoterol Targets GPR55-mediated Ligand Internalization and Impairs Cancer Cell Motility. (abst – 2013)

A GPR18-based signaling system regulates IOP in murine eye. (abst – 2013)

Cannabinoids inhibit cholinergic contraction in human airways through prejunctional CB1 receptors. (abst – 2014)
O-1918 - GPR-18 antagonist

A GPR18-based signaling system regulates IOP in murine eye. (abst – 2013)

O-1966 - CB2 agonist

Modulation of inflammatory responses by a cannabinoid-2-selective agonist after spinal cord injury. (full – 2011)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235339/

Acute effects of a selective cannabinoid-2 receptor agonist on neuroinflammation in a murine model of traumatic brain injury (abst – 2011)

Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood-brain barrier dysfunction under inflammatory conditions. (abst – 2012)

A cannabinoid type 2 receptor agonist attenuates blood-brain barrier damage and neurodegeneration in a murine model of traumatic brain injury. (abst – 2012)

O-1602, an atypical cannabinoid, inhibits tumor growth in colitis-associated colon cancer through multiple mechanisms. (abst – 2012)

Attenuation of HIV-1 replication in macrophages by cannabinoid receptor 2 agonists. (abst – 2013)

Effect of cannabinoid CB2 receptor agonism on learning and memory in a mouse model of photothrombosis (abst – 2013)
http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/1097.4?sid=eea722c0-971c-4daa-8b8c-38c0e63c19ad

O-2050 - CB1 antagonist

Suppression of feeding, drinking, and locomotion by a putative cannabinoid receptor ‘silent antagonist’ (abst – 2005)

Hypothalamic 2-arachidonoylglycerol regulates multistage process of high-fat diet preferences. (full – 2012)
Angiotensin II induces vascular endocannabinoid release, which attenuates its vasoconstrictor effect via CB1 cannabinoid receptors. (full – 2012) http://www.jbc.org/content/early/2012/07/11/jbc.M112.346296.full.pdf+html

OMDM-1 – blocks the reuptake of endocannabinoids

OMDM-2 – blocks the reuptake of endocannabinoids

STUDIES OF ANANDAMIDE ACCUMULATION INHIBITORS IN CEREBELLAR GRANULE NEURONS (full – 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248273/

Neuronal and glial alterations in the cerebellar cortex of maternally deprived rats: gender differences and modulatory effects of two inhibitors of endocannabinoid inactivation.

A new strategy to block tumor angiogenesis by inhibiting endocannabinoid inactivation (abst – 2013) http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/1105.6?sid=eea722c0-971c-4daa-8b8c-38c0e63c19ad

The administration of endocannabinoid uptake inhibitors OMDM-2 or VDM-11 promotes sleep and decreases extracellular levels of dopamine in rats. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23238438

ORG-27569 - enhances agonist-binding affinity to CB1

A key agonist-induced conformational change in the cannabinoid receptor CB1 is blocked by the allosteric ligand Org 27569. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/22846992

PF-3845 – blocks the breakdown of anandamide

Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. (full – 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692831/

Inhibition of monoacylglycerol lipase (MAGL) attenuates NSAID-induced gastric hemorrhages in mice. (full – 2011)
http://jpet.aspetjournals.org/content/early/2011/06/09/jpet.110.175778.long

The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice
(full – 2012)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423256/

The monoacylglycerol lipase inhibitor JZL184 suppresses inflammatory pain in the mouse carrageenan model.
(full – 2013)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717616/

Dual Inhibition of Endocannabinoid Catabolic Enzymes Produces Enhanced Anti-Withdrawal Effects in Morphine-Dependent Mice. (abst – 2013)

Selective inhibition of FAAH produces antidiarrheal and antinociceptive effect mediated by endocannabinoids and cannabinoid-like fatty acid amides. (abst – 2014)

PF-04457845 – blocks the breakdown of anandamide

A Systems Pharmacology Perspective on the Clinical Development of Fatty Acid Amide Hydrolase Inhibitors for Pain (full – 2014)
http://www.nature.com/psp/journal/v3/n1/full/psp201372a.html

4(PM49) - CB1 partial agonist

Synthetic cannabinoid quinones: Preparation, in vitro antiproliferative effects and in vivo prostate antitumor activity.
(abst – 2013)

RIMONABANT/ ACOMPLIA/ SR141716/ SR1 – a CB1 & CB2 antagonist, a failed weight loss drug

Cannabinoid receptor type 1 modulates excitatory and inhibitory neurotransmission in mouse colon (full – 2003) http://ajpgi.physiology.org/content/286/1/G110.full?sid=fc6948f0-78cf-405c-981b-aafaa05ee417c

Ethanol Induces Higher Bec in Cb1 Cannabinoid Receptor Knockout Mice While Decreasing Ethanol Preference. (full – 2005) http://alcalc.oxfordjournals.org/content/40/1/54.long
Activation of the Peripheral Endocannabinoid System in Human Obesity
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228268/?tool=pmcentrez

Enhancing Cannabinoid Neurotransmission Augments the Extinction of Conditioned Fear
http://www.nature.com/npp/journal/v30/n3/full/1300655a.html

Cannabinoid receptor ligands mediate growth inhibition and cell death in mantle cell lymphoma

Up-regulation of the endocannabinoid system in the uterus of leptin knockout (ob/ob) mice and implications for fertility
http://molehr.oxfordjournals.org/content/11/1/21.full

The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors

The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors.

The Cannabinoid Cb1 Receptor Antagonist Rimonabant Attenuates the Hypotensive Effect of Smoked Marijuana in Male Smokers.
http://www.abjonline.com/article/S0002-8703%2805%2901013-6/fulltext

Weight Control in Individuals With Diabetes
http://care.diabetesjournals.org/content/29/12/2749.full?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabis&searchid=1&FIRSTINDEX=2000&resourcetype=HWCIT

Anxiolytic-like properties of the anandamide transport inhibitor AM404.
http://www.nature.com/npp/journal/v31/n12/full/1301061a.html

Lack of tolerance to the suppressing effect of rimonabant on chocolate intake in rats.

Effects of endocannabinoid neurotransmission modulators on brain stimulation reward.

Acomplia may be dangerous for women of reproductive age
http://www.xagena.it/news/medicinenews_net_news/1ef4c899cd6f0d5cae3a2ea3a91adc1c.html

Obesity – Acomplia: loss of a few kilos, many questions
http://www.xagena.it/news/medicinenews_net_news/4b5739d494ab72c2a54540e67fe1c856.html

Big Pharma's Strange Holy Grail: Cannabis Without Euphoria?
http://www.mapinc.org/drugnews/v06.n899.a05.html

Cross-sensitization and cross-tolerance between exogenous cannabinoid antinociception and endocannabinoid-mediated stress-induced analgesia
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228268/?tool=pmcentrez
Cannabinoids as therapeutic agents in cardiovascular disease: a tale of passions and illusions. (full - 2007)

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771679/?tool=pubmed

Single and multiple doses of rimonabant antagonize acute effects of smoked cannabis in male cannabis users. (full - 2007)

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689519/?tool=pubmed

Rimonabant (SR141716) exerts anti-proliferative and immunomodulatory effects in human peripheral blood mononuclear cells (full - 2007)

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267266/?tool=pmcentrez

CB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents. (full – 2007)

http://www.jneurosci.org/content/29/5/1554.long

Cardiovascular Abnormalities in Cirrhosis: the Possible Mechanisms (full - 2007)

Cannabinoid CB1 receptors in the paraventricular nucleus and central control of penile erection: immunocytochemistry, autoradiography and behavioral studies (abst – 2007)

Pharmacological analysis of cannabinoid-induced inhibition of gastric mucosal damage and gastric motility (abst – 2007)

Rimonabant: safety issues (news – 2007)

http://www.xagena.it/news/medicinenews_net_news/09a11be6989d5a0e438dd9e589210a79.html

European watchdog warns about dangers of Acomplia (news - 2007)

Three Long-Term Diet Pills Show Poor Performance, Study Suggests (news - 2007)

FDA Advisory Panel Rejects Obesity Drug (news - 2007)

http://firstwatch.jwatch.org/cgi/content/full/2007/615/2?maxtoshow=&hits=80&RESULTFORMAT=&full
text=cannabinoid&searchid=1&FIRSTINDEX=2800&resourcetype=HWCIT

Differential response to a selective cannabinoid receptor antagonist (SR141716: rimonabant) in female mice from lines selectively bred for high voluntary wheel-running behaviour. (abst – 2008)

Caution Urged With New Anti-Obesity Drug In Kids (news - 2008)

http://www.sciencedaily.com/releases/2008/05/080507133326.htm
Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions (full – 2009)
http://www.nature.com/ijo/journal/v33/n9/full/ijo2009132a.html

The psychiatric side-effects of rimonabant. (full – 2009)

Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats. (full – 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1915592/?tool=pubmed

The endocannabinoid system and diabetes - critical analyses of studies conducted with rimonabant (full - 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770455/?tool=pmcentrez

Cannabinoids for clinicians: the rise and fall of the cannabinoid antagonists (full – 2009)
http://www.eje-online.org/cgi/content/full/161/5/655?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=160&resourcetype=HWCIT

Evaluation of Prevalent Phytocannabinoids in the Acetic Acid Model of Visceral Nociception (full – 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765124/?tool=pubmed

Systematic review and meta-analysis on the adverse events of rimonabant treatment: Considerations for its potential use in hepatology (full - 2009)
http://www.biomedcentral.com/1471-230X/9/75

The endocannabinoid system as a link between homoeostatic and hedonic pathways involved in energy balance regulation (full – 2009)
http://www.nature.com/ijo/journal/v33/n2s/full/ijo200967a.html

Endocannabinoids and cardiovascular prevention: real progress? (link to PDF - 2009)
http://www.pagepress.org/journals/index.php/hi/article/view/1162

Impairments in Endocannabinoid Signaling and Depressive Illness (abst -1st page – 2009)

Neurobiology and Systems Physiology of the Endocannabinoid System (abst – 2009)

Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression. (abst – 2009)

Cannabinoid receptor activation reverses kainate-induced synchronized population burst firing in rat hippocampus (abst – 2009)

GPR55 ligands promote receptor coupling to multiple signalling pathways. (full – 2010) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931561/?tool=pubmed

Rehashing endocannabinoid antagonists: can we selectively target the periphery to safely treat obesity and type 2 diabetes? (full – 2010) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931561/?tool=pubmed

Energetic Metabolism and Human Sperm Motility: Impact of CB1 Receptor Activation (full – 2010) http://endo.endojournals.org/content/151/12/5882.full

The Endocannabinoid System Tonically Regulates Inhibitory Transmission and Depresses the Effect of Ethanol in Central Amygdala (full - 2010) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904853/

Reduced neural response to reward following 7 days treatment with the cannabinoid CB1 antagonist rimonabant in healthy volunteers (abst – 2010)
Suicides in other trials led to early termination of trial into effects of weight loss drug rimonabant on cardiovascular outcomes (CRESCENDO study) (news – 2010) http://www.eurekalert.org/pub_releases/2010-08/1-sio081110.php

Risk of suicide spurs rimonabant trial to end. (news – 2010) http://www.thefreelibrary.com/Risk+of+suicide+spurs+rimonabant+trial+to+end.-a0238838571

Intracellular Cannabinoid Type 1 (CB1) Receptors Are Activated by Anandamide (full – 2011) http://www.jbc.org/content/286/33/29166.full

Sex Differences in Cannabinoid 1 vs. Cannabinoid 2 Receptor-Selective Antagonism of Antinociception Produced by Δ9-Tetrahydrocannabinol and CP55,940 in the Rat (full – 2011) http://jpet.aspetjournals.org/content/340/3/787.full

Bioactivation Pathways of the Cannabinoid Receptor 1 Antagonist Rimonabant (abst – 2011) http://dmd.aspetjournals.org/content/39/10/1823.abstract?sid=b46844d1-47a7-4474-817e-7e206e5948c8

CB1 cannabinoid receptor mediates glucocorticoid effects on hormone secretion induced by volume and osmotic changes. (abst – 2011) http://www.ncbi.nlm.nih.gov/pubmed/22211674

The central cannabinoid CB1 receptor is required for diet-induced obesity and rimonabrant's antiobesity effects in mice (abst – 2011) http://www.ncbi.nlm.nih.gov/pubmed/21799481

To Be or Not To Be—Obese (full – 2012)
http://endo.endojournals.org/content/152/10/3592.long

Probing the Interaction of SR141716A with the CB1 Receptor (full – 2012)
http://www.jbc.org/content/287/46/38741.full.pdf+html

The cannabinoid CB1 receptor antagonists rimonabant (SR141716) and AM251 directly potentiate GABAA receptors (full – 2012)

Relationships between glucose, energy intake and dietary composition in obese adults with type 2 diabetes receiving the cannabinoid 1 (CB1) receptor antagonist, rimonabant (full – 2012)
http://www.nutritionj.com/content/11/1/50

GPR18 in microglia: implications for the CNS and endocannabinoid system signaling (full – 2012)

Angiotensin II induces vascular endocannabinoid release, which attenuates its vasoconstrictor effect via CB1 cannabinoid receptors. (full – 2012)
http://www.jbc.org/content/early/2012/07/11/jbc.M112.346296.full.pdf+html

The role of CB2 receptor ligands in human eosinophil function (full – 2012)

Hypothalamic CB1 Cannabinoid Receptors Regulate Energy Balance in Mice (full – 2012)

The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. (full – 2012)
http://www.jbc.org/content/early/2012/11/16/jbc.M112.364109.long

Rimonabant eliminates responsiveness to workload changes in a time-constrained food-reinforced progressive ratio procedure in rats. (full – 2012)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387812/

Rimonabant improves obesity but not the overall cardiovascular risk and quality of life; results from CARDIO-REDUSE (CArdiometabolic Risk reDuctIOn by Rimonabant: the Effectiveness in Daily practice and its USE) (full – 2012)
http://fampra.oxfordjournals.org/content/29/5/521.full

How Weed Can Protect Us From Cancer and Alzheimer's (book excerpt – 2012)
http://www.alternet.org/story/156269/how_weed_can_protect_us_from_cancer_and_alzheimer%27s

The inverse agonist effect of rimonabant on G protein activation is not mediated by the cannabinoid CB1 receptor: Evidence from postmortem human brain. (abst – 2012)

Anti-obesity effects of the combined administration of CB1 receptor antagonist rimonabant and melanin-concentrating hormone antagonist SNAP-94847 in diet-induced obese mice. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/22473329

Reports of the death of CB1 antagonists have been greatly exaggerated: recent preclinical findings predict improved safety in the treatment of obesity. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/22743603

Fatty acid flux and oxidation are increased by rimonabant in obese women. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/22445512

Ghrelin-Induced Orexigenic Effect in Rats Depends on the Metabolic Status and Is Counteracted by Peripheral CB1 Receptor Antagonism. (full – 2013) http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0060918

Novel Insights Into CB1 Cannabinoid Receptor Signaling: A Key Interaction Identified Between EC3-Loop and TMH2. (full – 2013) http://jpet.aspetjournals.org/content/early/2013/02/21/jpet.112.201046.long

Diuretic effects of cannabinoids. (full – 2013) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533417/

Reduced Food Intake is the Major Contributor to the Protective Effect of Rimonabant on Islet in Established Obesity-Associated Type 2 Diabetes. (full – 2013) http://www.eymj.org/DOIx.php?id=10.3349/ymj.2013.54.5.1127

The Gastric CB1 Receptor Modulates Ghrelin Production through the mTOR Pathway to Regulate Food Intake. (full – 2013) http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0080339
WIN55, 212-2 promotes differentiation of oligodendrocyte precursor cells and improve remyelination through regulation of the phosphorylation level of the ERK 1/2 via cannabinoid receptor 1 after stroke-induced demyelination. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23148948

Effects of CB1 receptor blockade on monosodium glutamate induced hypometabolic and hypothalamic obesity in rats. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23620336

Infusion of cannabidiol into infralimbic cortex facilitates fear extinction via CB1 receptors. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23643693

Effects of the cannabinoid 2 receptor-selective agonist GW405833 in assays of acute pain-stimulated and paindepressed behavior in rats (abst – 2013) http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/886.9?sid=eea722c0-971c-4daa-8b8c-38c0e63c19ad

The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release (abst – 2013) http://www.fasebj.org/content/27/12/5112.abstract?sid=7a3e6978-9a8c-4319-bca1-9f80fed2445f

CB1 blockade-induced weight loss over 48 weeks decreases liver fat in proportion to weight loss in humans (abst – 2014) http://www.nature.com/ijo/journal/v37/n5/full/ijo2012116a.html

R(+)-METHANANANDAMIDE / AM-356 – anandamide analog

Up-Regulation of Cyclooxygenase-2 Expression Is Involved in R(_)-Methanandamide-Induced Apoptotic Death of Human Neuroglioma Cells (full - 2004) http://molpharm.aspetjournals.org/content/66/6/1643.full.pdf+html

Cannabinoid Receptor-Mediated Apoptosis Induced by R(+) - Methanandamide and Win55,212-2 Is Associated with Ceramide Accumulation and p38 Activation in Mantle Cell Lymphoma (full - 2006) http://molpharm.aspetjournals.org/content/70/5/1612.full

R(+)-methanandamide and other cannabinoids induce the expression of cyclooxygenase-2 and matrix metalloproteinases in human nonpigmented ciliary epithelial cells. (full – 2006) http://jpethquivos.aspetjournals.org/content/316/3/1219.long

R(+)-methanandamide elicits a cyclooxygenase-2-dependent mitochondrial apoptosis signaling pathway in human neuroglioma cells. (abst – 2006) http://www.springerlink.com/content/l403431i1728x733/

Loss of cannabinoid receptor 1 accelerates intestinal tumor growth (full - 2008) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561258/?tool=pubmed

Expression of cannabinoid receptors type 1 and type 2 in non-Hodgkin lymphoma: growth inhibition by receptor activation. (full – 2008)

Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: Involvement of CB2 (full - 2009)
http://www.nature.com/bjc/journal/v101/n6/full/6605248a.html

Potentiation of cannabinoid-induced cytotoxicity in mantle cell lymphoma through modulation of ceramide metabolism. (full - 2009)
http://mcr.aacrjournals.org/content/7/7/1086.long

Cannabinoid Receptor Activation Protects Coronary Endothelium Against Reperfusion Induced Intercellular Gap Formation in a Cellular Model of Ischemia and Reperfusion (abst - 2009)
http://circ.ahajournals.org/cgi/content/meeting_abstract/120/18_MeetingAbstracts/S1072-c?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=720&resourcetype=HWCIT

The cannabinoid R+ methanandamide induces IL-6 secretion by prostate cancer PC3 cells. (abst - 2009)

Energetic Metabolism and Human Sperm Motility: Impact of CB1 Receptor Activation (full – 2010)
http://endo.endojournals.org/content/151/12/5882.full

Anandamide capacitates bull spermatozoa through CB1 and TRPV1 activation. (full – 2011)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037938/?tool=pubmed

Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1. (full – 2011)
http://www.fasebj.org/content/26/4/1535.long

Pharmacological elevation of anandamide impairs short-term memory by altering the neurophysiology in the hippocampus. (abst – 2011)

Effects of Cannabinoid Agonists on Sheep Sphincter of Oddi in vitro. (abst – 2011)

Anandamide Induces Sperm Release from Oviductal Epithelia through Nitric Oxide Pathway in Bovines. (full – 2012)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281848/?tool=pubmed
Neonatal DSP-4 Treatment Modifies Antinociceptive Effects of the CB(1) Receptor Agonist Methanandamide in Adult Rats. (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526738/

Contrasting effects of different cannabinoid receptor ligands on mouse ingestive behavior (abst – 2012) http://www.unboundmedicine.com/medline/ebm/record/22772336/abstract/Contrasting_effects_of_different_cannabinoid_receptor_ligands_on_mouse_ingestive_behavior

Uncovering a role for endocannabinoid signaling in autophagy in preimplantation mouse embryos (abst – 2012) http://molehr.oxfordjournals.org/content/19/2/93.abstract

Activation of Type 1 Cannabinoid Receptor (CB1R) Promotes Neurogenesis in Murine Subventricular Zone Cell Cultures (full – 2013) http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0063529

Diuretic effects of cannabinoids. (full – 2013) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533417/

A new strategy to block tumor angiogenesis by inhibiting endocannabinoid inactivation (abst – 2013) http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/1105.6?sid=eea722c0-971c-4daa-8b8c-38c0c63c19ad

RWJ 400065 - CB 2 agonist

Control of spasticity in a multiple sclerosis model is mediated by CB1, not CB2, cannabinoid receptors. (full – 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189718/?tool=pubmed

S-444823 – CB1 & CB2 agonist

Discovery of S-444823, a potent CB1/CB2 dual agonist as an antipruritic agent.

SAB-378 – activates only peripheral CB1 and CB2 receptors, no high

CB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents. (full – 2007)
http://www.jneurosci.org/content/29/5/1554.long

Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone: a potent, orally bioavailable human CB1/CB2 dual agonist with antihyperalgesic properties and restricted central nervous system penetration. (abst – 2007)

Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (SAB378), a peripherally restricted cannabinoid CB1/CB2 receptor agonist, inhibits gastrointestinal motility but has no effect on experimental colitis in mice. (full – 2010)
http://jpet.aspetjournals.org/content/334/3/973.long

Control of spasticity in a multiple sclerosis model using central nervous system-excluded CB1 cannabinoid receptor agonists. (abst – 2013)

SAD-448 – activates only peripheral CB1 receptors, no high

Control of spasticity in a multiple sclerosis model using central nervous system-excluded CB1 cannabinoid receptor agonists. (abst – 2013)
SPICE – NEWS - various synthetic cannabinoid mixtures - also see the AM, HU, JWH, and CP series

Synthetic cannabis mimic found in herbal incense (news – 2009)

Inhaled Incense “K2” May Cause Heart Damage (news – 2010)
http://drwes.blogspot.com/2010/08/inhaled-incense-k2-may-cause-heart.html

The New Cannabinoids (news – 2010)
http://www.wellsphere.com/drug-addiction-article/the-new-cannabinoids/1247426

1 in 9 high school seniors using synthetic marijuana (news – 2011)

'Fake Marijuana' May Trigger Heart Trouble in Teens (news – 2011)

Texas teens had heart attacks after smoking K2 (news – 2011)

Chemicals Used in "Spice" and "K2" Type Products Now Under Federal Control and Regulation (news – 2011)
http://www.justice.gov/dea/pubs/pressrel/pr030111.html

Synthetic cannabis linked to extended psychosis (news – 2011)

'Hammer Head' 'incense' blamed for seizure of youth in Le Roy (news – 2012)

Synthetic marijuana was created strictly for research at Clemson (news – 2012)
http://www.timesnews.net/article/9042095/synthetic-marijuana-was-created-strictly-for-research-at-clemson

Why K2 is Pimps’ Choice for Controlling Young Sex Workers (news – 2012)

Outbreak of kidney failure in Wyoming linked to "Spice" (news – 2012)
http://www.reuters.com/article/2012/03/03/us-spice-illness-wyoming-idUSTRE82204T20120303
'Spice'-y Party Drugs Can Lead to the ED (news – 2012)

Wyoming kidney failure outbreak linked to designer 'blueberry spice' drug, aka 'legal marijuana' (news – 2012)

Blueberry “spice” in Wyoming linked to cases of renal failure (news – 2012)
http://www.thepoisonreview.com/2012/03/03/blueberry-spice-in-wyoming-linked-to-cases-of-renal-failure/

New health concerns about 'fake pot' in US (news – 2012)

Tachycardia followed by bradycardia after smoking the synthetic cannabinoid “K9” (news – 2012)

Synthetic marijuana sent more than 11,400 people to ER in 2010 (news – 2012)

With Labs Pumping Out Legal Highs, China Is the New Front in the Global Drug War (news – 2013)

Teen narrowly escapes death after smoking synthetic marijuana (news – 2013)

Synthetic Marijuana Dangerous for Kidneys (news – 2013)
http://www.sciencedaily.com/releases/2013/02/130208124553.htm

Study: Consumers Prefer Natural Cannabis Over Synthetic 'Marijuana' Herbal Products (news – 2013)
http://norml.org/news/2013/01/10/study-consumers-prefer-natural-cannabis-over-synthetic-marijuana-herbal-products

Synthetic Marijuana Harms Kidneys of 16 Users, CDC Reports (news - 2013)

Synthetic cannabis: how it's made, what's in it (news – 2013)

Death link to synthetic cannabis (news – 2013)
http://www.nzherald.co.nz/nz/news/article.cfm?c_id=1&objectid=10882473&ref=rss

Synthetic drugs carry risk of kidney damage (news – 2013)

High K2 use rate among psych unit patients (news – 2013)
SPICE - STUDIES - various synthetic cannabinoid mixtures - also see the AM, HU, JWH, and CP series

Withdrawal Phenomena and Dependence Syndrome After the Consumption of "Spice Gold" (full - 2009) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719097/?tool=pmcentrez

Marijuana-based Drugs: Innovative Therapeutics or Designer Drugs of Abuse? (full – 2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139381/?tool=pubmed

Convulsions Associated with the Use of a Synthetic Cannabinoid Product. (link to PDF– 2011)
http://www.springerlink.com/content/9651q2672027n38g/fulltext.html

Psychosis Associated With Synthetic Cannabinoid Agonists: A Case Series (letter – 2011)
http://ajp.psychiatryonline.org/cgi/content/full/168/10/1119

The "new" marijuana. (abst – 2011)

The impact of changes in UK classification of the synthetic cannabinoid receptor agonists in 'Spice'. (abst – 2011)

Synthetic cannabinoid use in New Zealand: a brief evaluation of inquiries to the New Zealand National Poisons Centre (abst – 2011)

Severe toxicity following synthetic cannabinoid ingestion. (abst – 2011)

The emergence and analysis of synthetic cannabinoids. (abst – 2011)

Use of high-resolution accurate mass spectrometry to detect reported and previously unreported cannabinomimetics in "herbal high" products. (abst – 2011)

"Spice" girls: synthetic cannabinoid intoxication. (abst – 2011)

Three cases of "spice" exposure. (abst – 2011)

"Legal highs" - new players in the old drama. (abst – 2011)

Comparison of "herbal highs" composition. (abst – 2011)

Synthetic cannabinoid use: a case series of adolescents. (abst – 2011)

Myocardial Infarction Associated With Use of the Synthetic Cannabinoid K2. (abst – 2011)

Cytotoxicity of synthetic cannabinoids found in "Spice" products: the role of cannabinoid receptors and the caspase cascade in the NG 108-15 cell line. (abst – 2011)
High-performance sport, marijuana, and cannabimimetics. (abst – 2011)

Effects of synthetic cannabinoids on electroencephalogram power spectra in rats. (abst – 2011)
http://www.unboundmedicine.com/medline/ebm/record/21640532/abstract/Effects_of_synthetic_cannabinoids_on_electroencephalogram_power_spectra_in_rats

Detection of synthetic cannabinoids in herbal incense products. (abst – 2011)

Synthetic cannabinoids--the new "legal high" drugs (abst – 2011)

A Characterization of Synthetic Cannabinoid Exposures Reported to the National Poison Data System in 2010 (full – 2012)

Acute mental disturbance caused by synthetic cannabinoid: a potential emerging substance of abuse in Hong Kong. (full – 2012)

Using dopamine research to generate rational cannabinoid drug policy. (full – 2012)

Synthetic legal intoxicating drugs: The emerging ‘incense’ and ‘bath salt’ phenomenon (full – 2012)
http://www.ccjm.org/content/79/4/258.abstract?ijkey=5c626a27db768c92b048d2d30e94a1a6421fe767&keytype2=tf_ipsecsha

Acute Intoxication Caused by a Synthetic Cannabinoid in Two Adolescents (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470439/

Characterization of In Vitro Metabolites of CP 47,497, a Synthetic Cannabinoid, in Human Liver Microsomes by LC-MS/MS. (abst – 2012)

Identification and structural characterization of the synthetic cannabinoid 3-(1-adamantoyl)-1-pentylnindole as an additive in 'herbal incense'. (abst – 2012)

Headache after substance abuse: A diagnostic dilemma. (abst - 2012)

Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. (abst – 2012) http://www.ncbi.nlm.nih.gov/pubmed/22266354

Synthetic cannabinoid and marijuana exposures reported to poison centers. (abst – 2012)

First European case of convulsions related to analytically confirmed use of the synthetic cannabinoid receptor agonist AM-2201. (abst – 2012)

Synthetic Cannabinoid Intoxication: A Case Series and Review. (abst – 2012)

Synthetic Cannabinoid and Cathinone Use Among US Soldiers. (abst – 2012)

Adolescent Synthetic Cannabinoid Exposures Reported to Texas Poison Centers. (abst – 2012)

URB-754: A new class of designer drug and 12 synthetic cannabinoids detected in illegal products. (abst – 2012)

DNA sequence analyses of blended herbal products including synthetic cannabinoids as designer drugs. (abst – 2012)

Identification, extraction and quantification of the synthetic cannabinoid JWH-018 from commercially available herbal marijuana alternatives. (abst – 2012)

Inhalation exposure to smoke from synthetic "marijuana" produces potent cannabimimetic effects in mice. (abst – 2012)

Determination of 22 synthetic cannabinoids in human hair by liquid chromatography-tandem mass spectrometry. (abst – 2012)

Synthetic cannabinoids in "spice-like" herbal blends: first appearance of JWH-307 and recurrence of JWH-018 on the German market. (abst - 2012)

Patterns of synthetic cannabinoid use in Australia (abst – 2012)

Determination of naphthalen-1-yl-(1-pentyllindol-3-yl)methanone (JWH-018) in mouse blood and tissue after inhalation exposure to ‘buzz’ smoke by HPLC/MS/MS (abst – 2012)

Synthetic cannabis (abst – 2012) http://tidsskriftet.no/article/2896636/en_GB

Emergency Physicians' Knowledge of Cannabinoid Designer Drugs. (full – 2013) http://escholarship.org/uc/item/9mk2951f

Notes from the field: severe illness associated with synthetic cannabinoid use - brunswick, georgia, 2013 (report – 2013) http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6246a7.htm

Acute Kidney Injury Associated with Synthetic Cannabinoid Use — Multiple States, 2012 (report – 2013) http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6206a1.htm

Synthetic cannabis (article – 2013) http://tidsskriftet.no/article/2896636/en_GB

Screening for synthetic cannabinoids in hair by using LC-QTOF MS: A new and powerful approach to study the penetration of these new psychoactive substances in the population. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23842479
Suicidal ideation and self-harm following K2 use. (abst – 2013)

Synthetic cannabis: A comparison of patterns of use and effect profile with natural cannabis in a large global sample. (abst – 2013)

Prevalence of new designer drugs and their legal status in Japan. (abst – 2013)

Kronic hysteria: Exploring the intersection between Australian synthetic cannabis legislation, the media, and drug-related harm. (abst – 2013)

Identification and Structural Elucidation of Four Cannabimimetic Compounds (RCS-4, AM-2201, JWH-203 and JWH-210) in Seized Products. (abst – 2013)

Symptoms, toxicities, and analytical results for a patient after smoking herbs containing the novel synthetic cannabinoid MAM-2201 (abst – 2013)
http://link.springer.com/article/10.1007/s11419-012-0166-1

Psychosis and Severe Rhabdomyolysis Associated with Synthetic Cannabinoid Use. (abst – 2013)

High Times, Low Sats: Diffuse Pulmonary Infiltrates Associated with Chronic Synthetic Cannabinoid Use. (abst – 2013)

Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors. (abst – 2013)

LC/ESI-MS/MS method for quantification of 28 synthetic cannabinoids in neat oral fluid and its application to preliminary studies on their detection windows. (abst – 2013)

The Synthetic Cannabinoid Withdrawal Syndrome. (abst – 2013)

Driving under the influence of synthetic cannabinoids ("Spice"): a case series. (abst – 2013)
Electroconvulsive Therapy (ECT) for Catatonia in a Patient With Schizophrenia and Synthetic Cannabinoid Abuse: A Case Report. (abst – 2013)

The omega and omega-1 monohydroxyl metabolites of the abused K2/Spice synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as agonists at human cannabinoid 2 receptors (hCB2s) (abst – 2013)
http://www.fasebj.org/cgi/content/meeting_abstract/26/1_MeetingAbstracts/660.8?sid=eea722c0-971c-4daa-8b8c-38c0e63c19ad

Effect and occurrence of synthetic cannabinoids (abst – 2013)

Synthetic cannabinoids and potential reproductive consequences. (abst – 2013)

Hospitalisation associated with use of the synthetic cannabinoid K2. (abst – 2013)

Smart drugs: green shuttle or real drug? (abst – 2013)

"Herbal incense": Designer drug blends as cannabimimetics and their assessment by drug discrimination and other in vivo bioassays. (abst – 2013)

A Case of Cannabinoid Hyperemesis Syndrome Caused by Synthetic Cannabinoids. (abst – 2013)

Detection of Synthetic Cannabinoids in Oral Fluid Using ELISA and LC-MS-MS. (abst – 2013)

Toxicological Findings of Synthetic Cannabinoids in Recreational Users. (abst – 2013)

The secret "spice": an undetectable toxic cause of seizure. (abst – 2013)

CB1 Receptor-Mediated Signaling Underlies the Hippocampal Synaptic, Learning and Memory Deficits Following Treatment with JWH-081, a New Component of Spice/K2 Preparations. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/24123667

Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death (abst – 2013) http://www.sciencedirect.com/science/article/pii/S0041008X13004766

SR-144528 - CB(2) receptor antagonist

CB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents. (full – 2007) http://www.jneurosci.org/content/29/5/1554.long

CB2 Cannabinoid Receptors Promote Neural Progenitor Cell Proliferation via mTORC1 Signaling (full – 2011) http://www.jbc.org/content/287/2/1198.full

The effects of peptide and lipid endocannabinoids on arthritic pain at the spinal level. (full – 2012)

Effects of the cannabinoid 2 receptor-selective agonist GW405833 in assays of acute pain-stimulated and paindepressed behavior in rats (abst – 2013) http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/886.9?sid=eea722c0-971c-4daa-8b8c-38c0c63c19ad

SURINABANT - CB1 antagonist

TAK-875 - GPR-40 agonist

TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats.

Takeda moves potential first-in-class diabetes drug into phase III

A Multiple-Ascending-Dose Study to Evaluate Safety, Pharmacokinetics, and Pharmacodynamics of a Novel GPR40 Agonist, TAK-875, in Subjects With Type 2 Diabetes.

Optimization of (2,3-dihydro-1-benzofuran-3-yl)acetic acids: discovery of a non-free fatty acid-like, highly bioavailable G protein-coupled receptor 40/free fatty acid receptor 1 agonist as a glucose-dependent insulinotropic agent.

TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial.

TAK-937 - CB1 & CB2 agonist

Contribution of Hypothermia and CB(1) Receptor Activation to Protective Effects of TAK-937, a Cannabinoid Receptor Agonist, in Rat Transient MCAO Model.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397930/?tool=pubmed

Cerebroprotective effects of TAK-937, a cannabinoid receptor agonist, on ischemic brain damage in middle cerebral artery occluded rats and non-human primates.

Cerebroprotective effects of TAK-937, a novel cannabinoid receptor agonist, in permanent and thrombotic focal cerebral ischemia in rats: Therapeutic time window, combination with t-PA and efficacy in aged rats.

TARANABANT/ MK-0364 - CB1 inverse agonist, a weight loss drug
The discovery of taranabant, a selective cannabinoid-1 receptor inverse agonist for the treatment of obesity. (full – 2008)

Taranabant, a novel cannabinoid type 1 receptor inverse agonist. (abst – 2008)

Influence of taranabant, a cannabinoid-1 receptor inverse agonist, on pharmacokinetics and pharmacodynamics of warfarin. (abst – 2009)

Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions (full – 2009)
http://www.nature.com/ijo/journal/v33/n9/full/ijo2009132a.html

Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression. (abst – 2009)

Development of a population pharmacokinetic model for taranabant, a cannabinoid-1 receptor inverse agonist. (full – 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976981/

Central and peripheral consequences of the chronic blockade of CB1 cannabinoid receptor with rimonabant or taranabant. (full – 2010)

A one-year study to assess the safety and efficacy of the CB1R inverse agonist taranabant in overweight and obese patients with type 2 diabetes. (abst – 2010)

A clinical trial assessing the safety and efficacy of the CB1R inverse agonist taranabant in obese and overweight patients: low-dose study (abst – 2010)
http://www.nature.com/ijo/journal/v34/n8/full/ijo201038a.html

Randomized, controlled, double-blind trial of taranabant for smoking cessation (abst – 2010)

Metabolism and excretion of [14C]taranabant, a cannabinoid-1 inverse agonist, in humans. (abst – 2010)

Neuropsychiatric adverse effects of centrally acting antiobesity drugs. (abst – 2011)

Human abuse potential and cognitive effects of taranabant, a cannabinoid 1 receptor inverse agonist: a randomized, double-blind, placebo- and active-controlled, crossover study in recreational polydrug users. (abst – 2012)
The cannabinoid-1 receptor inverse agonist taranabant reduces abdominal pain and increases intestinal transit in mice.
(abst – 2013)

Development of amorphous solid dispersion formulations of a poorly water-soluble drug, MK-0364.
(abst – 2013)

TM38837 - a mostly peripherally restricted CB1 antagonist

Experimental obesity drug avoids brain effects that troubled predecessors
(news – 2010)
http://phys.org/news197905295.html

Low brain CB1 receptor occupancy by a second generation CB1 receptor antagonist TM38837 in comparison with rimonabant in nonhuman primates: A PET study.
(abst – 2013)

Peripheral selectivity of the novel cannabinoid receptor antagonist TM38837 in healthy subjects.
(abst – 2013)

UR-144 – CB1 antagonist

URB-754: A new class of designer drug and 12 synthetic cannabinoids detected in illegal products.
(abst – 2012)

Detection of urinary metabolites of AM-2201 and UR-144, two novel synthetic cannabinoids.
(abst – 2013)

Cannabinoids in disguise: Δ9-tetrahydrocannabinol-like effects of tetramethylcyclopropyl ketone indoles.
(abst – 2013)

Analysis of UR-144 and its pyrolysis product in blood and their metabolites in urine.
(abst – 2013)

First Metabolic Profile of XLR-11, a Novel Synthetic Cannabinoid, Obtained by Using Human Hepatocytes and High-Resolution Mass Spectrometry.
(abst – 2013)

Toxicological Findings of Synthetic Cannabinoids in Recreational Users.
(abst – 2013)

URB-447 – CB1 antagonist

URB-532 - slows cannabinoid destruction

The postmortal accumulation of brain N-arachidonylethanolamine (anandamide) is dependent upon fatty acid amide hydrolase activity. (full – 2005) http://www.jlr.org/content/46/2/342.long

URB-597 / KDS-4103 - slows cannabinoid destruction in the body, not the brain.

Antidepressant-like Activity and Modulation of Brain Monoaminergic Transmission by Blockade of Anandamide Hydrolysis. (full – 2005)
http://www.pnas.org/content/102/51/18620.long

Depression: URB597 increases endocannabinoids in brain (news – 2005)
http://www.xagenia.it/news/medicinenews_net_news/158388770a41292b277c199ca8d95ccf.html

Blocking the destruction of endocannabinoids (news – 2005)

The Endogenous Cannabinoid Anandamide Produces δ-9-Tetrahydrocannabinol-Like Discriminative and Neurochemical Effects That Are Enhanced by Inhibition of Fatty Acid Amide Hydrolase but Not by Inhibition of Anandamide Transport (full - 2007)
http://jpet.aspetjournals.org/content/321/1/370.full

Parkinsons' Helped By Marijuana-Like Chemicals In Brain (news – 2007)
http://www.medicalnewstoday.com/releases/62616.php

Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models (full - 2006)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1751298/?tool=pmcentrez

Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: role of CB1 and TRPV1 receptors (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2128772/?tool=pmcentrez

The CB1 Cannabinoid Receptor Mediates Excitotoxicity-induced Neural Progenitor Proliferation and Neurogenesis (full - 2007) http://www.jbc.org/content/282/33/23892.full

The fatty acid amide hydrolase inhibitor URB597 (cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice. (full - 2007) http://jpet.aspetjournals.org/content/322/1/236.long

Marijuana-Like Brain Chemicals Work As Antidepressant (news - 2007)
Enhancing Activity Of Marijuana-Like Chemicals In Brain Helps Treat Parkinson's Symptoms In Mice (news - 2007)

Acute hypertension reveals depressor and vasodilator effects of cannabinoids in conscious rats (full - 2008)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697765/?tool=pmcentrez

Pharmacological enhancement of endocannabinoid signaling reduces the cholinergic toxicity of diisopropylfluorophosphate. (full – 2008)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659532/

An endocannabinoid signaling system modulates anxiety-like behavior in male Syrian hamsters. (full – 2008)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694060/

The FAAH inhibitor URB-597 ameliorates cannabinoid withdrawal in mice (abst - 2008)
http://www.fasebj.org/cgi/content/meeting_abstract/22/1_MeetingAbstracts/711.6?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=720&resourcetype=HWCIT

Inhibition of anandamide hydrolysis by URB597 reverses abuse-related behavior and neurochemical effects of nicotine in rats (abst – 2008)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663803/?tool=pubmed

Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. (abst – 2008)

Blockade of endocannabinoid-degrading enzymes attenuates neuropathic pain. (full - 2009)
http://jpet.aspetjournals.org/content/330/3/902.full?sid=af53ea87-ab4b-426e-9c7e-8f750e9c4a17

Long-term consequences of URB597 administration during adolescence on cannabinoid CB1 receptor binding in brain areas. (abst – 2009)

Behavioral sequelae following acute diisopropylfluorophosphate intoxication in rats: comparative effects of atropine and cannabinomimetics. (full – 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854260/?tool=pubmed

Preservation of Striatal Cannabinoid CB1 Receptor Function Correlates with the Antianxiety Effects of Fatty Acid Amide Hydrolase Inhibition (full – 2010)
http://molpharm.aspetjournals.org/content/78/2/260.long

Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism (full – 2010)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260554/?tool=pubmed

Regulation of nausea and vomiting by cannabinoids (full - 2010)
Local application of the endocannabinoid hydrolysis inhibitor URB597 reduces nociception in spontaneous and chemically induced models of osteoarthritis. (abst – 2010)

Behavioural and molecular consequences of chronic cannabinoid treatment in Huntington's disease transgenic mice. (abst – 2010)

A new drug that kills pain like marijuana, without getting you stoned (news – 2010)

Pain target enzyme's working made crystal clear (news – 2010)

Endocannabinoid regulation of acute and protracted nicotine withdrawal: effect of FAAH inhibition. (full – 2011)

Increasing Antiproliferative Properties of Endocannabinoids in N1E-115 Neuroblastoma Cells through Inhibition of Their Metabolism. (full – 2011)

Administration of URB597, oleoylethanolamide or palmitoylethanolamide increases waking and dopamine in rats. (full – 2011)

L-Type Calcium Channel Mediates Anticonvulsant Effect of Cannabinoids in Acute and Chronic Murine Models of Seizure. (abst – 2011)

Pharmacological elevation of anandamide impairs short-term memory by altering the neurophysiology in the hippocampus. (abst – 2011)

Fatty acid amide hydrolase blockade attenuates the development of collagen-induced arthritis and related thermal hyperalgesia in mice. (abst - 2011)

The endocannabinoid, anandamide, augments Notch-1 signaling in cultured cortical neurons exposed to amyloid-beta and in the cortex of aged rats. (full – 2012) http://www.jbc.org/content/early/2012/08/13/jbc.M112.350678.long

Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB1 receptors (full – 2012) http://ajpregu.physiology.org/content/302/7/R876

The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation (full – 2012) http://www.jneuroinflammation.com/content/9/1/79

The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action (full – 2012) http://www.biomedcentral.com/1471-2407/12/92

The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation (full – 2012) http://www.jneuroinflammation.com/content/9/1/79

The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423256/

Cannabinoid type-1 receptor reduces pain and neurotoxicity produced by chemotherapy. (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366638/

The FAAH inhibitor URB597 efficiently reduces tyrosine hydroxylase expression through CB1 and FAAH-independent mechanisms.
(abst – 2012)

Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy: effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment.
(abst – 2012)

The FAAH inhibitor URB597 efficiently reduces tyrosine hydroxylase expression through CB1 and FAAH-independent mechanisms
(abst – 2012)

Pharmacological modulation of the endocannabinoid signalling alters binge-type eating behaviour in female rats
(abst – 2012)

The endocannabinoid, anandamide, augments Notch-1 signaling in cultured cortical neurons exposed to amyloid-β and in the cortex of aged rats.
(abst – 2012)

Potential Pain Medication Targets Peripheral Nerves
(news – 2012)
http://www.drugabuse.gov/news-events/nida-notes/potential-pain-medication-targets-peripheral-nerves

Modulating the endocannabinoid system in human health and disease: successes and failures
(full – 2013)

Full Inhibition of Spinal FAAH Leads to TRPV1-Mediated Analgesic Effects in Neuropathic Rats and Possible Lipoxygenase-Mediated Remodeling of Anandamide Metabolism
(full – 2013)
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0060040

Targeting the Endocannabinoid System to Treat Sepsis
(review – 2013)
http://www.signavitae.com/articles/review-articles/222-targeting-the-endocannabinoid-system-to-treat-sepsis

Inhibition of FAAH and activation of PPAR: New approaches to the treatment of cognitive dysfunction and drug addiction.
(abst – 2013)

Modulation by 17β-estradiol of anandamide vasorelaxation in normotensive and hypertensive rats: a role for TRPV1 but not fatty acid amide hydrolase.
(abst – 2013)

Inhibition Of Fatty Acid Amide Hydrolase Activates Nrf2 Signaling And Induces Heme Oxygenase 1 Transcription In Breast Cancer Cells.
(abst – 2013)

Effects of anandamide and other CB1 ligands on cognitive function (abst – 2013) http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/1097.10?sid=eaa722c0-971c-4daa-88bc-38c0c63c19ad

Effects of compounds that interfere with the endocannabinoid system on behaviors predictive of anxiolytic and panicolytic activity in the elevated T-maze (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/23711591

Effects of the fatty acid amide hydrolase inhibitor URB597 on coping behavior under challenging conditions in mice. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/24037493

Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB1 and CB2 receptors. (abst – 2013) http://www.ncbi.nlm.nih.gov/pubmed/24148808

Monounsaturated fatty acids generated via stearoyl CoA desaturase-1 are endogenous inhibitors of fatty acid amide hydrolase. (abst – 2013)

Endocannabinoids underlie reconsolidation of hedonic memories in Wistar rats. (abst – 2013)

Endocannabinoid Signaling in Hypothalamic-Pituitary-Adrenocortical Axis Recovery Following Stress: Effects of Indirect Agonists and Comparison of Male and Female Mice. (abst – 2013)

Long-term consequences of perinatal fatty acid amino hydrolase inhibition (abst – 2013)

URB-602 - stops the breakdown of anandamide and 2-AG

Pharmacological enhancement of endocannabinoid signaling reduces the cholinergic toxicity of diisopropylfluorophosphate. (full – 2008)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659532/

Inhibition of COX-2 expression by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-γ (full – 2011)

Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB1 and CB2 receptors. (abst – 2013)

URB-754 - slows cannabinoid destruction

The CB1 Cannabinoid Receptor Mediates Excitotoxicity-induced Neural Progenitor Proliferation and Neurogenesis (full - 2007)
http://www.jbc.org/content/282/33/23892.full

URB-754: A new class of designer drug and 12 synthetic cannabinoids detected in illegal products. (abst – 2012)

URB-937 - slows cannabinoid destruction

Compound boosts marijuana-like chemical in the body to relieve pain at injury site (news - 2010) http://www.eurekalert.org/pub_releases/2010-09/uoc-cbm092010.php

VD-60 - peripheral cannabinoid receptor 1 antagonist

WIN 55,212-2 - CB1 & CB2 agonist

Cross-tolerance between delta-9-tetrahydrocannabinol and the cannabimimetic agents, CP 55,940, WIN 55,212-2 and anandamide. (full - 1993) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175863/?tool=pmcentrez&page=1

Cannabinoid Receptor Agonists Protect Cultured Rat Hippocampal Neurons from Excitotoxicity (full - 1998) http://molpharm.aspetjournals.org/content/54/3/459.full

Cannabinoids and Neuroprotection in Global and Focal Cerebral Ischemia and in Neuronal Cultures (full - 1999) http://www.jneurosci.org/cgi/content/full/19/8/2987?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&resourcetype=HWCIT

Involvement of Cannabinoid Receptors in the Intraocular Pressure-Lowering Effects of WIN55212-2 (full - 2000) http://jpent.aspetjournals.org/content/292/1/136.long

Effects of cannabinoid receptor agonists on neuronally-evoked contractions of urinary bladder tissues isolated from rat, mouse, pig, dog, monkey and human (full - 2000) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571997/?tool=pmcentrez

Central and peripheral cannabinoid modulation of gastrointestinal transit in physiological states or during the diarrhoea induced by croton oil (full - 2000) http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1572019&tool=pmcentrez

The cannabinoid agonist WIN55,212-2 suppresses opioid-induced emesis in ferrets. (link to PDF - 2001)
The cannabinoid CB1 receptor antagonist SR 141716A reverses the antiemetic and motor depressant actions of WIN 55, 212-2

Increased Severity of Stroke in CB1 Cannabinoid Receptor Knock-Out Mice

Contrasting effects of WIN 55212-2 on motility of the rat bladder and uterus.

CB1 Receptors in the Preoptic Anterior Hypothalamus Regulate WIN 55212-2 [(4,5-Dihydro-2-methyl-4-(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one]-Induced Hypothermia

A Peripheral Mechanism for CB1 Cannabinoid Receptor-Dependent Modulation of Feeding

Influence of the CB1 receptor antagonist, AM 251, on the regional haemodynamic effects of WIN-55212-2 or HU 210 in conscious rats

The potent emetogenic effects of the endocannabinoid, 2-AG (2-arachidonoylglycerol) are blocked by delta(9)-tetrahydrocannabinol and other cannabinoids.

Evidence for functional CB1 cannabinoid receptor expressed in the rat thyroid

Effects of pharmacological manipulations of cannabinoid receptors on severity of dystonia in a genetic model of paroxysmal dyskinesia.

Inhibition of tumor angiogenesis by cannabinoids

The Endogenous Cannabinoid System Regulates Seizure Frequency and Duration in a Model of Temporal Lobe Epilepsy
Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R(+)-WIN55,212 (full - 2003)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC152941/?tool=pmcentrez

Cannabinoid receptor type 1 modulates excitatory and inhibitory neurotransmission in mouse colon (full – 2003)
http://ajpgi.physiology.org/content/286/1/G110.full?sid=fc6948f0-78cf-405c-981b-afaa05ee417c

Effect of WIN 55212-2, a Cannabinoid Receptor Agonist, on Aqueous Humor Dynamics in Monkeys (link to PDF - 2003)
http://archopht.ama-assn.org/cgi/content/full/121/1/87?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=marihuana&searchid=1&FIRSTINDEX=640&resourcetype=HWCIT

Cannabinoids: Defending the Epileptic Brain (full - 2004)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1176332/?tool=pmcentrez

The effect of WIN 55,212-2, a cannabinoid agonist, on tactile allodynia in diabetic rats. (abst – 2004)

Marijuana-like compounds may aid array of debilitating conditions ranging from Parkinson's to pain (news – 2004)

Enhancing Cannabinoid Neurotransmission Augments the Extinction of Conditioned Fear (full - 2005)
http://www.nature.com/npp/journal/v30/n3/full/1300655a.html

Effects of cannabinoids on colonic muscle contractility and tension in guinea pigs. (full – 2005)
https://www.jstage.jst.go.jp/article/jnms/72/1/72_1_43/_pdf

The cannabinoid receptor agonist WIN 55212-2 inhibits neurogenic inflammations in airway tissues. (full – 2005)
https://www.jstage.jst.go.jp/article/jphs/98/1/98_1_77/_pdf

Cannabinoid receptor ligands mediate growth inhibition and cell death in mantle cell lymphoma (full – 2005)

Systemic administration of WIN 55,212-2 increases norepinephrine release in the rat frontal cortex (abst - 2005)
Cannabinoids down-regulate PI3K/Akt and Erk signalling pathways and activate proapoptotic function of Bad protein. (abst – 2005)

Cannabinoid Receptor-Mediated Apoptosis Induced by R(+)–Methanandamide and Win55,212–2 Is Associated with Ceramide Accumulation and p38 Activation in Mantle Cell Lymphoma (full - 2006)
http://molpharm.aspetjournals.org/content/70/5/1612.full

Increasing cannabinoid levels by pharmacological and genetic manipulation delay disease progression in SOD1 mice (full - 2006)
http://www.fasebj.org/cgi/content/full/20/7/1003

Activation of G-proteins in brain by endogenous and exogenous cannabinoids. (full – 2006)

Effects of a Cannabinoid Agonist on Spinal Nociceptive Neurons in a Rodent Model of Neuropathic Pain (full - 2006)
http://jn.physiology.org/cgi/content/full/96/6/2984

The Endocannabinoid System Controls Key Epileptogenic Circuits in the Hippocampus (full - 2006)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1769341/?tool=pmcentrez

Antinociceptive effect of cannabinoid agonist WIN 55,212–2 in rats with a spinal cord injury (full - 2006)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1861843/?tool=pmcentrez

Activation of the Cannabinoid Type-1 Receptor Mediates the Anticonvulsant Properties of Cannabinoids in the Hippocampal Neuronal Culture Models of Acquired Epilepsy and Status Epilepticus (full - 2006)
http://jpet.aspetjournals.org/content/317/3/1072.full?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=320&resourcetype=HWCIT#ref-list-1

Cannabinoid Receptor Agonist-induced Apoptosis of Human Prostate Cancer Cells LNCaP Proceeds through Sustained Activation of ERK1/2 Leading to G1 Cell Cycle Arrest (full - 2006)
http://www.jbc.org/content/281/51/39480.full

Modulation of paraoxon toxicity by the cannabinoid receptor agonist WIN 55,212-2. (abst – 2006)

Cannabinoid receptors as a target for therapy of ovarian cancer (abst - 2006)
http://www.aacrmeetingabstracts.org/cgi/content/abstract/2006/1/1084?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=560&resourcetype=HWCIT

The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells. (abst - 2006)

Cannabinoids, in combination with (NSAIDS), produce a synergistic analgesic effect (news - 2006) http://www.norml.org/index.cfm?Group_ID=6819

Continuous infusion of the cannabinoid WIN 55,212–2 to the site of a peripheral nerve injury reduces mechanical and cold hypersensitivity (full - 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2013951/?tool=pmcentrez

The phytocannabinoid Δ9-tetrahydrocannabivarin modulates inhibitory neurotransmission in the cerebellum (full – 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2438968/

Antinociceptive effect of cannabinoid agonist WIN 55,212–2 in rats with a spinal cord injury (full - 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1861843/?tool=pmcentrez

Activation of cannabinoid CB1 and CB2 receptors suppresses neuropathic nociception evoked by the chemotherapeutic agent vincristine in rats. (full – 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190028/?tool=pubmed

Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. (full - 2007) http://www.jneurosci.org/cgi/content/full/27/43/11700

Anti-inflammatory property of the cannabinoid agonist WIN-55212-2 in a rodent model of chronic brain inflammation (full - 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852513/?tool=pmcentrez

Antinociceptive Synergy Between the Cannabinoid Receptor Agonist WIN 55,212-2 and Bupivacaine in the Rat Formalin Test (full - 2007) http://journals.lww.com/anesthesia-analgesia/Fulltext/2007/03000/Antinociceptive_Synergy_Between_the_Cannabinoid_50.aspx

Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats (full - 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190006/?tool=pmcentrez

Cross-sensitization and cross-tolerance between exogenous cannabinoid antinociception and endocannabinoid-mediated stress-induced analgesia (full - 2007) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771679/?tool=pubmed
CANNABINOID-INDUCED HYPERPHAGIA: CORRELATION WITH INHIBITION OF PROOPIOMELANOCORTIN NEURONS? (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720321/?tool=pmcentrez

Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: role of CB1 and TRPV1 receptors (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2128772/?tool=pmcentrez

Cannabinoid self-administration in rats: sex differences and the influence of ovarian function (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190022/

Development of pharmacoresistance to benzodiazepines but not cannabinoids in the hippocampal neuronal culture model of status epilepticus (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2094113/?tool=pmcentrez

Control of spasticity in a multiple sclerosis model is mediated by CB1, not CB2, cannabinoid receptors. (full - 2007)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189718/?tool=pubmed

Anti-inflammatory property of the cannabinoid agonist WIN-55212-2 in a rodent model of chronic brain inflammation (full - 2007)

CB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents. (full – 2007)
http://www.jneurosci.org/content/29/5/1554.long

Subchronic cannabinoid agonist (WIN 55,212-2) treatment during cocaine abstinence alters subsequent cocaine seeking behavior. (link to full - 2007)
http://www.nature.com/npp/journal/v32/n11/full/1301365a.html

The synthetic cannabinoids attenuate alldynia and hyperalgesia in a rat model of trigeminal neuropathic pain. (abst – 2007)

Cannabinoid receptors agonist WIN-55,212-2 inhibits angiogenesis, metastasis and tumor growth of androgen-sensitive prostate cancer cell CWR22R{nu}1 xenograft in athymic nude mice (abst - 2007)
http://www.aacrmeetingabstracts.org/cgi/content/meeting_abstract/2007/1_Annual_Meeting/2195?maxtosh ow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=720&resourcetype=HW CIT

Pharmacological analysis of cannabinoid-induced inhibition of gastric mucosal damage and gastric motility (abst – 2007)

Additive Effects of Timolol and Cannabinoids on Intraocular Pressure in a Rat Glaucoma Model (abst - 2007)
http://abstracts.iovs.org/cgi/content/abstract/48/5/4807?maxtosh ow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=560&resourcetype=HW CIT
Synthetic form of THC is an effective anti-depressant at low doses

Cannabis: Potent Anti-Depressant In Low Doses, Worsens Depression At High Doses

Chronic cannabinoid administration in vivo compromises extinction of fear memory.
http://learnmem.cshlp.org/content/15/12/876.long

Topical WIN55212-2 Alleviates Intraocular Hypertension in Rats Through a CB1 Receptor-Mediated Mechanism of Action
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659532/

Pharmacological enhancement of endocannabinoid signaling reduces the cholinergic toxicity of diisopropylfluorophosphate.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637200/?tool=pmcentrez

Attenuation of Experimental Autoimmune Hepatitis by Exogenous and Endogenous Cannabinoids: Involvement of Regulatory T Cells
http://molpharm.aspetjournals.org/content/74/1/20.full?maxtoshow=&hits=80&RESULTFORMAT=&fulltext=cannabinoid&searchid=1&FIRSTINDEX=320&resourcetype=HWCIT#content-block

Peripheral Cannabinoids Attenuate Carcinoma Induced Nociception in Mice
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771220/

Role of activated endocannabinoid system in regulation of cellular cholesterol metabolism in macrophages
http://cardiovascres.oxfordjournals.org/content/81/4/805.full?sid=7d2438c4-a727-410f-870d-4a971695b4f

Acute hypertension reveals depressor and vasodilator effects of cannabinoids in conscious rats
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697765/?tool=pmcentrez

The influence of mast cell mediators on migration of SW756 cervical carcinoma cells.
https://www.jstage.jst.go.jp/article/jphs/106/2/106_FP0070736/_pdf

Cannabinoid 2 receptor induction by IL-12 and its potential as a therapeutic target for the treatment of anaplastic thyroid carcinoma.
http://www.nature.com/cgt/journal/v15/n2/full/7701101a.html

An endocannabinoid signaling system modulates anxiety-like behavior in male Syrian hamsters.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694060/

Differential effects of repeated low dose treatment with the cannabinoid agonist WIN 55,212-2 in experimental models of bone cancer pain and neuropathic pain.
Cannabinoid receptor agonists inhibit growth and metastasis of breast cancer (abst - 2008)
http://www.aacrmeetingabstracts.org/cgi/content/meeting_abstract/2008/1_Annual_Meeting/4081\?maxtoshow=&\hits=80&RESULTFORMAT=&\fulltext=cannabinoid&searchid=1\&FIRSTINDEX=480&resourcetype=HWCIT

New neuron production can be increased in the hippocampus of aged rats following cannabinoid treatment (abst – 2008)

Scientists are High on Idea that Cannabis Reduces Memory Impairment (news - 2008)

Could Marijuana Substance Help Prevent Or Delay Memory Impairment In The Aging Brain? (news - 2008)

WIN55,212-2, a Cannabinoid Receptor Agonist, Protects Against Nigrostriatal Cell Loss in the MPTP Mouse Model of Parkinson’s Disease (full - 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755595/?tool=pmcentrez

Sustained antinociceptive effect of cannabinoid receptor agonist WIN 55,212-2 over time in rat model of neuropathic spinal cord injury pain (full - 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743245/?tool=pmcentrez

Cannabinoid-1 (CB1) receptors regulate colonic propulsion by acting at motor neurons within the ascending motor pathways in mouse colon (full - 2009)
http://ajpgi.physiology.org/cgi/content/full/296/1/G119\?maxtoshow=&\hits=80&RESULTFORMAT=&\fulltext=cannabinoid&searchid=1\&FIRSTINDEX=160&resourcetype=HWCIT

Cannabinoid Receptor Activation in the Basolateral Amygdala Blocks the Effects of Stress on the Conditioning and Extinction of Inhibitory Avoidance (full - 2009)
http://www.inneurosci.org/cgi/content/full/29/36/11078?maxtoshow=&\hits=10&RESULTFORMAT=&\fulltext=Dr.+Irit+Akirav+&andorexactfulltext=and&searchid=1\&FIRSTINDEX=0&resourcetype=HWCIT

Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats. (full – 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1915592/?tool=pubmed

Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory (full - 2009)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660732/?tool=pmcentrez

Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer (full - 2009)
http://mct.aacrjournals.org/content/8/11/3117.full

Cannabinoids inhibit fibrogenesis in diffuse systemic sclerosis fibroblasts (full - 2009)
http://rheumatology.oxfordjournals.org/content/48/9/1050.full
Prolonged exposure to WIN55,212-2 causes downregulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757117/?tool=pubmed

Cannabinoid agonist WIN-55,212-2 partially restores neurogenesis in the aged rat brain
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3011092/?tool=pubmed

Cannabinoids attenuate the effects of aging upon neuroinflammation and neurogenesis.

EFFECTIVENESS OF A CANNABINOID AGONIST TO MODIFY THE ALTERED MECHANOSENSITIVITY OF A-DELTA FIBERS AFTER ANTITUMORAL TREATMENT.

The CB1/CB2 receptor agonist WIN-55,212-2 reduces viability of human Kaposi’s sarcoma cells in vitro

International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2
http://pharmrev.aspetjournals.org/content/62/4/588.full.pdf+html

Cannabinoid-mediated inhibition of recurrent excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871782/?tool=pubmed

Cannabinoids excite circadian clock neurons.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927117/?tool=pubmed

A synthetic cannabinoid agonist promotes oligodendrogliogenesis during viral encephalitis in rats
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981070/?tool=pubmed

The synthetic cannabinoid WIN 55,212-2 sensitizes hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating p8/CCAAT/enhancer binding protein homologous protein (CHOP)/death receptor 5 (DR5) axis.
http://molpharm.aspetjournals.org/content/77/5/854.long

Antitumorigenic Effects of Cannabinoids beyond Apoptosis
http://jpet.aspetjournals.org/content/332/2/336.full?sid=af53ea87-ab4b-426e-9c7e-8f750e9c4a17

Sex difference in cell proliferation in developing rat amygdala mediated by endocannabinoids has implications for social behavior.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996668/?tool=pubmed

The Neuroprotective Effect of Cannabinoid Receptor Agonist (WIN55,212-2) in Paraoxon Induced Neurotoxicity in PC12 Cells and N-methyl-D-aspartate Receptor
The Endocannabinoid System Tonically Regulates Inhibitory Transmission and Depresses the Effect of Ethanol in Central Amygdala (full - 2010) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904853/

Pharmacologically induced hypothermia with cannabinoid receptor agonist WIN55, 212-2 after cardiopulmonary resuscitation (abst – 2010) http://journals.lww.com/ccmjournal/Abstract/2010/12000/Pharmacologically_induced_hypothermia_with.2.aspx

Cannabinoid Receptor Agonist WIN-55,212-2 Protects Differentiated PC12 Cells From Organophosphorus- Induced Apoptosis (abst – 2010) http://ijt.sagepub.com/content/29/2/201.abstract

Cannabinoid Agonists Inhibit Neuropathic Pain Induced by Brachial Plexus Avulsion in Mice by Affecting Glial Cells and MAP Kinases. (full – 2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172222/?tool=pubmed

Regulatory effect of cannabinoid receptor agonist on chemokine-induced lymphocyte chemotaxis. (full – 2011) https://www.jstage.jst.go.jp/article/bpb/34/7/34_7_1090/_pdf

Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimers' disease (full – 2011) http://molpharm.aspetjournals.org/content/early/2011/02/24/mol.111.071290.pdf

A Pilot Study into the Effects of the CB1 Cannabinoid Receptor Agonist WIN55,212-2 or the Antagonist/Inverse Agonist AM251 on Sleep in Rats (full – 2011) http://www.hindawi.com/journals/sd/2011/178469/

Cannabinoid exposure during zebra finch sensorimotor vocal learning persistently alters expression of endocannabinoid signaling elements and acute agonist responsiveness (full – 2011) http://www.biomedcentral.com/1471-2202/12/3

Synthetic cannabinoid WIN 55,212-2 mesylate enhances the protective action of four classical antiepileptic drugs against maximal electroshock-induced seizures in mice. (abst – 2011) http://www.unboundmedicine.com/medline/ebm/record/21238473/abstract/Synthetic_cannabinoid_WIN_55212_2_mesylate_enhances_the_protective_action_of_four_classical_antiepileptic_drugs_against_maximal_electroshock_induced_seizures_in_mice

Δ(9)-THC and WIN55,212-2 affect brain tissue levels of excitatory amino acids in a phenotype-, compound-, dose-, and region-specific manner (abst – 2011) http://www.unboundmedicine.com/medline/ebm/record/21645556/abstract/%CE%94_9__THC_and_WIN55212_2_affect_brain_tissue_levels_of_excitatory_amino_acids_in_a_phenotype__compound__dose_and_region_specific_manner

Reduced alcohol intake and reward associated with impaired endocannabinoid signaling in mice with a deletion of the glutamate transporter GLAST. (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372600/

The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation (full – 2012) http://www.jneuroinflammation.com/content/9/1/79

Prolonged oral Cannabinoid Administration prevents Neuroinflammation, lowers beta-amyloid Levels and improves Cognitive Performance in Tg APP 2576 Mice. (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292807/

Cannabinoids Facilitate the Swallowing Reflex Elicited by the Superior Laryngeal Nerve Stimulation in Rats (full – 2012) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507745/

The synthetic cannabinoid R(+)WIN55,212-2 augments interferon-β expression via peroxisome proliferator-activated receptor-α (full – 2012) http://www.jbc.org/content/early/2012/05/31/jbc.M112.371757.full.pdf+html

Angiotensin II induces vascular endocannabinoid release, which attenuates its vasoconstrictor effect via CB1 cannabinoid receptors. (full – 2012) http://www.jbc.org/content/early/2012/07/11/jbc.M112.346296.full.pdf+html

Cannabinoid receptor activation correlates with the pro-apoptotic action of the β2-adrenergic agonist, (R,R')-4-methoxy-1-naphthylfenoterol, in HepG2 hepatocarcinoma cells. (full – 2012) http://jpet.aspetjournals.org/content/early/2012/07/09/jpet.112.195206.long

Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids (full - 2012) http://rstb.royalsocietypublishing.org/content/367/1607/3254.full?sid=1569c370-cd5c-4358-89ff-857201f5e069
Review article: The endocannabinoid system in normal and pathological brain ageing (full – 2012)
http://rstb.royalsocietypublishing.org/content/367/1607/3326.full?sid=161e7b36-5055-448b-962e-697c782e901d

Acetaminophen differentially enhances social behavior and cortical cannabinoid levels in inbred mice. (full – 2012)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389197/

The molecular connections between the cannabinoid system and endometriosis (full – 2012)
http://molehr.oxfordjournals.org/content/18/12/563.full

Neural Circuit in the Dorsal Raphe Nucleus Responsible for Cannabinoid-Mediated Increases in 5-HT Efflux in the Nucleus Accumbens of the Rat Brain (full – 2012)
http://www.hindawi.com/isrn/pharmacology/2012/276902/

Contrasting effects of different cannabinoid receptor ligands on mouse ingestive behavior (abst – 2012)
http://www.unboundmedicine.com/medline/ebm/record/22772336/abstract/Contrasting_effects_of_differen_t_cannabinoid_receptor_ligands_on_mouse_ingestive_behaviour_

Inverse relationship of cannabimimetic (R+)WIN 55, 212 on behavior and seizure threshold during the juvenile period. (abst – 2012)

The Cannabinoid WIN 55212-2 Mitigates Apoptosis and Mitochondrial Dysfunction After Hypoxia Ischemia. (abst – 2012)

Tolerance to cannabinoid-induced behaviors in mice treated chronically with ethanol. (abst – 2012)

Cannabinoids and muscular pain. Effectiveness of the local administration in rat. (abst – 2012)

Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB(1) receptor-mediated anti-inflammatory effects. (abst - 2012)

Cannabinoid 1 (CB1) receptor mediates WIN55, 212-2 induced hypothermia and improved survival in a rat post-cardiac arrest model. (abst – 2012)

Vascular metabolism of anandamide to arachidonic acid affects myogenic constriction in response to intraluminal pressure elevation. (abst – 2012)

Reduced infarct size and accumulation of microglia in rats treated with WIN 55,212-2 after neonatal stroke. (abst – 2012)

Nutritional n-3 polyunsaturated fatty acids deficiency alters cannabinoid receptor signaling pathway in the brain and associated anxiety-like behavior in mice. (abst – 2012) http://www.springerlink.com/content/ur5784gm34782505/

The periaqueductal gray contributes to bidirectional enhancement of antinociception between morphine and cannabinoids. (abst – 2012)

Cannabinoid type 1 receptor ligands WIN 55,212-2 and AM 251 alter anxiety-like behaviors of marmoset monkeys in an open-field test. (abst – 2012)

Chronic cannabinoid exposure reduces phencyclidine-induced schizophrenia-like positive symptoms in adult (abst – 2012)
http://www.safetylit.org/citations/index.php?fuseaction=citations.viewdetails&citationIds[]=citjournalarticle_374483_1

Endocannabinoid modulation of jejunal afferent responses to LPS (abst – 2012)

Palmitoylethanolamide is a new possible pharmacological treatment for the inflammation associated with trauma. (abst – 2012)

WIN55,212-2 protects oligodendrocyte precursor cells in stroke penumbra following permanent focal cerebral ischemia in rats. (abst – 2012)

Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. (abst – 2012)

Inverse relationship of cannabimimetic (R+)-WIN 55, 212 on behavior and seizure threshold during the juvenile period (abst – 2012)

A CB₁/CB₂ receptor agonist, WIN 55,212-2, exerts its therapeutic effect in a viral autoimmune model of multiple sclerosis by restoring self-tolerance to myelin. (abst – 2012)

Novel Insights Into CB1 Cannabinoid Receptor Signaling: A Key Interaction Identified Between EC3-Loop and TMH2. (full – 2013)
http://jpet.aspetjournals.org/content/early/2013/02/21/jpet.112.201046.long

A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition. (full – 2013)
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0058926

Interactions between mu opioid receptor agonists and cannabinoid receptor agonists in rhesus monkeys: antinociception, drug discrimination, and drug self-administration. (full – 2013)
http://jpet.aspetjournals.org/content/early/2013/03/27/jpet.113.204099.long

Role of endogenous cannabinoid system in the gut. (full - 2013)
CB2 Receptor Agonists Protect Human Dopaminergic Neurons against Damage from HIV-1 gp120. (full – 2013)
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0077577

Combined antiproliferative effects of the aminoalkylindole WIN55,212-2 and radiation in breast cancer cells. (full – 2013)
http://jpet.aspetjournals.org/content/early/2013/11/20/jpet.113.205120.long

Diuretic effects of cannabinoids. (full – 2013)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533417/

A role for O-1602 and G protein-coupled receptor GPR55 in the control of colonic motility in mice. (full – 2013) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677091/

Critical appraisal of the potential use of cannabinoids in cancer management. (link to PDF – 2013)

Suppression of vascular endothelial growth factor expression by cannabinoids in a canine osteosarcoma cell line (link to PDF – 2013)

Interactions between mu opioid receptor agonists and cannabinoid receptor agonists CP55940 and WIN55212-2 in rhesus monkeys: evaluation of treatment- and abuse-related effects (abst – 2013)
http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/1097.3?sid=7a3e6978-9a8c-4319-bca1-9f80fed2445f

WIN55, 212-2 promotes differentiation of oligodendrocyte precursor cells and improve remyelination through regulation of the phosphorylation level of the ERK 1/2 via cannabinoid receptor 1 after stroke-induced demyelination. (abst – 2013)

Chronic cannabinoid exposure reduces phencyclidine-induced schizophrenia-like positive symptoms in adult rats (abst – 2013)
http://link.springer.com/article/10.1007/s00213-012-2839-1

Novelty-Induced Emotional Arousal Modulates Cannabinoid Effects on Recognition Memory and Adrenocortical Activity

Cannabinoids and traumatic stress modulation of contextual fear extinction and GR expression in the amygdala-hippocampal-prefrontal circuit.

Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory.

Characterisation of cannabinoid-induced relief of neuropathic pain in a rat model of cisplatin-induced neuropathy.

Neuroprotective effects of topical CB1 agonist WIN 55212-2 on Retinal ganglion cells after acute rise in intraocular pressure induced ischemia in rat.

Effect of Cannabinoid Receptor Activation on Spreading Depression.

Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models.

Role of intra-accumbal cannabinoid CB1 receptors in the potentiation, acquisition and expression of morphine-induced conditioned place preference.

Functional activity of the cannabinoid 1 receptor is not affected by opioid antagonists in the rat brain.

The non-selective cannabinoid receptor agonist WIN 55,212-2 attenuates responses of C-fiber nociceptors in a murine model of cancer pain.

Cannabinoid receptor activation in the nucleus tractus solitaries produces baroreflex-like responses in the rat.

Cannabinoid 1 receptor as therapeutic target in preventing chronic epilepsy
(abst – 2013)
http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/660.2?sid=eea722c0-971c-4daa-8b8c-38c0e63c19ad

Effect of Cannabinoids and MethoxyPolyethylene Glycols on Aqueous Humor Outflow and Vascular Tone
(abst – 2013)
http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/lb541?sid=eea722c0-971c-4daa-8b8c-38c0e63c19ad

Effects of anandamide and other CB1 ligands on cognitive function
(abst – 2013)
http://www.fasebj.org/cgi/content/meeting_abstract/27/1_MeetingAbstracts/1097.10?sid=eea722c0-971c-4daa-8b8c-38c0e63c19ad
Effects of compounds that interfere with the endocannabinoid system on behaviors predictive of anxiolytic and panicolytic activity in the elevated T-maze (abst – 2013)

Dysregulation of Cannabinoid CB1 Receptor and Associated Signaling Networks in Brains of Cocaine Addicts and Cocaine-Treated Rodents. (abst – 2013)

Cannabinoid Receptor Agonist as an Alternative Drug in 5-Fluorouracil-resistant Gastric Cancer Cells. (abst – 2013)

Cannabidiol attenuates catalepsy induced by distinct pharmacological mechanisms via 5-HT1A receptors activation in mice. (abst – 2013)

Regulation of cell proliferation by GPR55/cannabinoid receptors using (R,R')-4'-methoxy-1-naphthylfenoterol in rat C6 glioma cell line (abst – 2013)
http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=695437a2-7613-4bef-8697-2294f2da859&cKey=18ba6eb0-2c5f-4004-a56f-2d1f450e2ed1&mKey=9b2d28e7-24a0-466f-a3c9-07c21f6e9be9

CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations. (abst – 2013)

Activation of spinal cannabinoid cb2 receptors inhibits neuropathic pain in streptozotocin-induced diabetic mice. (abst – 2013)

Exogenous Delta9-Tetrahydrocannabinol Influences Circulating Endogenous Cannabinoids in Humans. (abst – 2013)

Prospects for cannabinoid therapies in viral encephalitis. (abst – 2013)

The Cannabinoid WIN 55,212-2 Decreases Specificity Protein (Sp) Transcription Factors and the Oncogenic Cap Protein eIF4E in Colon Cancer Cells. (abst – 2013)

Continuous central infusion of cannabinoid receptor agonist WIN 55,212-2 decreases maternal care in lactating rats: Consequences for fear conditioning in adulthood males. (abst – 2013)

PPARγ mediates the effects of WIN55,212-2, an synthetic cannabinoid, on the proliferation and apoptosis of the BEL-7402 hepatocarcinoma cells. (abst – 2013)
Moving around the molecule: Relationship between chemical structure and in vivo activity of synthetic cannabinoids. (abst – 2013)

Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells. (abst – 2013)

Diuretic effects of cannabinoid agonists in mice. (abst – 2013)

Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid. (abst – 2013)

Peripheral and Spinal Activation of Cannabinoid Receptors by Joint Mobilization Alleviates Postoperative Pain in Mice. (abst – 2013)

Differential effects of the cannabinoid agonist WIN55,212-2 on delay and trace eyeblink conditioning (abst – 2013)

Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB1 and CB2 receptors. (abst – 2013)

Cannabinoid Receptor Activation Prevents the Effects of Chronic Mild Stress on Emotional Learning and LTP in a Rat Model of Depression. (abst – 2013)

Effects of WIN 55,212-2 mesylate on the anticonvulsant action of lamotrigine, oxcarbazepine, pregabalin and topiramate against maximal electroshock-induced seizures in mice. (abst – 2013)

Antineoplastic Effect of WIN 55,212-2, a Cannabinoid Agonist, in a Murine Xenograft Model of Gastric Cancer (abst – 2013)

Improved Cardiac and Neurologic Outcomes With Postresuscitation Infusion of Cannabinoid Receptor Agonist WIN55, 212-2 Depend on Hypothermia in a Rat Model of Cardiac Arrest. (abst – 2013)

Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments. (abst – 2013)

Concurrent pharmacological modification of cannabinoid-1 and glucagon-like peptide-1 receptor activity affects feeding behavior and body weight in rats fed a free-choice, high-carbohydrate diet. (abst – 2013)

XLR-11 – potent CB1 & CB2 agonist

Acute Kidney Injury Associated with Synthetic Cannabinoid Use — Multiple States, 2012 (report – 2013) http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6206a1.htm

